ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot Disks And Delayed Bar Formation

215   0   0.0 ( 0 )
 نشر من قبل Kartik Sheth
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kartik Sheth




اسأل ChatGPT حول البحث

We present observational evidence for the inhibition of bar formation in dispersion-dominated (dynamically hot) galaxies by studying the relationship between galactic structure and host galaxy kinematics in a sample of 257 galaxies between 0.1 $<$ z $leq$ 0.84 from the All-Wavelength Extended Groth Strip International Survey (AEGIS) and the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey. We find that bars are preferentially found in galaxies that are massive and dynamically cold (rotation-dominated) and on the stellar Tully-Fisher relationship, as is the case for barred spirals in the local Universe. The data provide at least one explanation for the steep ($times$3) decline in the overall bar fraction from z=0 to z=0.84 in L$^*$ and brighter disks seen in previous studies. The decline in the bar fraction at high redshift is almost exclusively in the lower mass (10 $<$ log M$_{*}$(Msun)$<$ 11), later-type and bluer galaxies. A proposed explanation for this downsizing of the bar formation / stellar structure formation is that the lower mass galaxies may not form bars because they could be dynamically hotter than more massive systems from the increased turbulence of accreting gas, elevated star formation, and/or increased interaction/merger rate at higher redshifts. The evidence presented here provides observational support for this hypothesis. However, the data also show that not every disk galaxy that is massive and cold has a stellar bar, suggesting that mass and dynamic coldness of a disk are necessary but not sufficient conditions for bar formation -- a secondary process, perhaps the interaction history between the dark matter halo and the baryonic matter, may play an important role in bar formation.


قيم البحث

اقرأ أيضاً

We derive the bar fraction in three different environments ranging from the field to Virgo and Coma clusters, covering an unprecedentedly large range of galaxy luminosities (or, equivalently, stellar masses). We confirm that the fraction of barred ga laxies strongly depends on galaxy luminosity. We also show that the difference between the bar fraction distributions as a function of galaxy luminosity (and mass) in the field and Coma cluster are statistically significant, with Virgo being an intermediate case. We interpret this result as a variation of the effect of environment on bar formation depending on galaxy luminosity. We speculate that brighter disk galaxies are stable enough against interactions to keep their cold structure, thus, the interactions are able to trigger bar formation. For fainter galaxies the interactions become strong enough to heat up the disks inhibiting bar formation and even destroying the disks. Finally, we point out that the controversy regarding whether the bar fraction depends on environment could be resolved by taking into account the different luminosity ranges of the galaxy samples studied so far.
We propose that star formation is delayed relative to the inflow rate in rapidly-accreting galaxies at very high redshift (z > 2) because of the energy conveyed by the accreting gas. Accreting gas streams provide fuel for star formation, but they sti r the disk and increase turbulence above the usual levels compatible with gravitational instability, reducing the star formation efficiency in the available gas. After the specific inflow rate has sufficiently decreased - typically at z < 3 - galaxies settle in a self-regulated regime with efficient star formation. An analytic model shows that this interaction between infalling gas and young galaxies can significantly delay star formation and maintain high gas fractions (>40%) down to z = 2, in contrast to other galaxy formation models. Idealized hydrodynamic simulations of infalling gas streams onto primordial galaxies confirm the efficient energetic coupling at z > 2, and suggest that this effect is largely under-resolved in existing cosmological simulations.
We follow the formation and evolution of bars in N-body simulations of disc galaxies with gas and/or a triaxial halo. We find that both the relative gas fraction and the halo shape play a major role in the formation and evolution of the bar. In gas-r ich simulations, the disc stays near-axisymmetric much longer than in gas-poor ones, and, when the bar starts growing, it does so at a much slower rate. Due to these two effects combined, large-scale bars form much later in gas-rich than in gas-poor discs. This can explain the observation that bars are in place earlier in massive red disc galaxies than in blue spirals. We also find that the morphological characteristics in the bar region are strongly influenced by the gas fraction. In particular, the bar at the end of the simulation is much weaker in gas-rich cases. In no case did we witness bar destruction. Halo triaxiality has a dual influence on bar strength. In the very early stages of the simulation it induces bar formation to start earlier. On the other hand, during the later, secular evolution phase, triaxial haloes lead to considerably less increase of the bar strength than spherical ones. The shape of the halo evolves considerably with time. The inner halo parts may become more elongated, or more spherical, depending on the bar strength. The main body of initially triaxial haloes evolves towards sphericity, but in initially strongly triaxial cases it stops well short of becoming spherical. Part of the angular momentum absorbed by the halo generates considerable rotation of the halo particles that stay located relatively near the disc for long periods of time. Another part generates halo bulk rotation, which, contrary to that of the bar, increases with time but stays small.
104 - J. Mendez-Abreu 2009
Galaxy mergers and interactions are mechanisms which could drive the formation of bars. Therefore, we could expect that the fraction of barred galaxies increases with the local density. Here we show the first results of an extensive search for barred galaxies in different environments. We conclude that the bar fraction on bright (L>L*) field, Virgo, and Coma cluster galaxies is compatible. These results point towards an scenario where the formation and/or evolution of bars depend mostly on internal galaxy processes rather than external ones.
We use numerical simulations of isolated galaxies to study the effects of stellar feedback on the formation and evolution of giant star-forming gas clumps in high-redshift, gas-rich galaxies. Such galactic disks are unstable to the formation of bound gas-rich clumps whose properties initially depend only on global disk properties, not the microphysics of feedback. In simulations without stellar feedback, clumps turn an order-unity fraction of their mass into stars and sink to the center, forming a large bulge and kicking most of the stars out into a much more extended stellar envelope. By contrast, strong radiative stellar feedback disrupts even the most massive clumps after they turn ~10-20% of their mass into stars, in a timescale of ~10-100 Myr, ejecting some material into a super-wind and recycling the rest of the gas into the diffuse ISM. This suppresses the bulge formation rate by direct clump coalescence by a factor of several. However, the galactic disks do undergo significant internal evolution in the absence of mergers: clumps form and disrupt continuously and torque gas to the galactic center. The resulting evolution is qualitatively similar to bar/spiral evolution in simulations with a more homogeneous ISM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا