ﻻ يوجد ملخص باللغة العربية
We describe how the result in [1] extends to prove the existence of a Serre type spectral sequence converging to the symplectic homology SH_*(M) of an exact Sub-Liouville domain M in a cotangent bundle T*N. We will define a notion of a fiber-wise symplectic homology SH_*(M,q) for each point q in N, which will define a graded local coefficient system on N. The spectral sequence will then have page two isomorphic to the homology of N with coefficients in this graded local system.
We prove a version of the Arnold conjecture for Lagrangian submanifolds of conformal symplectic manifolds: a Lagrangian $L$ which has non-zero Morse-Novikov homology for the restriction of the Lee form $beta$ cannot be disjoined from itself by a $C^0
We classify symplectically foliated fillings of certain contact foliated manifolds. We show that up to symplectic deformation, the unique minimal symplectically foliated filling of the foliated sphere cotangent bundle of the Reeb foliation in the 3-s
We use Menkes JSJ-type decomposition theorem for symplectic fillings to reduce the classification of strong and exact symplectic fillings of virtually overtwisted torus bundles to the same problem for tight lens spaces. For virtually overtwisted stru
We give detailed descriptions of gluing pseudoholomorphic maps in symplectic geometry, especially in the presence of an obstruction bundle. The main motivation is to try to compare the symplectic and enumerative invariants of algebraic manifolds. The
Recently, Tsai-Tseng-Yau constructed new invariants of symplectic manifolds: a sequence of Aoo-algebras built of differential forms on the symplectic manifold. We show that these symplectic Aoo-algebras have a simple topological interpretation. Namel