ترغب بنشر مسار تعليمي؟ اضغط هنا

A Unified Approach to Diffusion Analysis of Queues with General Patience-time Distributions

26   0   0.0 ( 0 )
 نشر من قبل Jiheng Zhang
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a unified approach to establishing diffusion approximations for queues with impatient customers within a general framework of scaling customer patience time. The approach consists of two steps. The first step is to show that the diffusion-scaled abandonment process is asymptotically close to a function of the diffusion-scaled queue length process under appropriate conditions. The second step is to construct a continuous mapping not only to characterize the system dynamics using the system primitives, but also to help verify the conditions needed in the first step. The diffusion approximations can then be obtained by applying the continuous mapping theorem. The approach has two advantages: (i) it provides a unified procedure to establish the diffusion approximations regardless of the structure of the queueing model or the type of patience-time scaling; (ii) and it makes the diffusion analysis of queues with customer abandonment essentially the same as the diffusion analysis of queues without customer abandonment. We demonstrate the application of this approach via the single server system with Markov-modulated service speeds in the traditional heavy-traffic regime and the many-server system in the Halfin-Whitt regime and the non-degenerate slowdown regime.

قيم البحث

اقرأ أيضاً

We consider a stochastic fluid queue served by a constant rate server and driven by a process which is the local time of a certain Markov process. Such a stochastic system can be used as a model in a priority service system, especially when the time scales involved are fast. The input (local time) in our model is always singular with respect to the Lebesgue measure which in many applications is ``close to reality. We first discuss how to rigorously construct the (necessarily) unique stationary version of the system under some natural stability conditions. We then consider the distribution of performance steady-state characteristics, namely, the buffer content, the idle period and the busy period. These derivations are much based on the fact that the inverse of the local time of a Markov process is a Levy process (a subordinator) hence making the theory of Levy processes applicable. Another important ingredient in our approach is the Palm calculus coming from the point process point of view.
We consider a processor sharing queue where the number of jobs served at any time is limited to $K$, with the excess jobs waiting in a buffer. We use random counting measures on the positive axis to model this system. The limit of this measure-valued process is obtained under diffusion scaling and heavy traffic conditions. As a consequence, the limit of the system size process is proved to be a piece-wise reflected Brownian motion.
In this paper, we analyse a single server polling model with two queues. Customers arrive at the two queues according to two independent Poisson processes. There is a single server that serves both queues with generally distributed service times. The server spends an exponentially distributed amount of time in each queue. After the completion of this residing time, the server instantaneously switches to the other queue, i.e., there is no switch-over time. For this polling model we derive the steady-state marginal workload distribution, as well as heavy traffic and heavy tail asymptotic results. Furthermore, we also calculate the joint queue length distribution for the special case of exponentially distributed service times using singular perturbation analysis.
Fluid queues are mathematical models frequently used in stochastic modelling. Their stationary distributions involve a key matrix recording the conditional probabilities of returning to an initial level from above, often known in the literature as th e matrix $Psi$. Here, we present a probabilistic interpretation of the family of algorithms known as emph{doubling}, which are currently the most effective algorithms for computing the return probability matrix $Psi$. To this end, we first revisit the links described in cite{ram99, soares02} between fluid queues and Quasi-Birth-Death processes; in particular, we give new probabilistic interpretations for these connections. We generalize this framework to give a probabilistic meaning for the initial step of doubling algorithms, and include also an interpretation for the iterative step of these algorithms. Our work is the first probabilistic interpretation available for doubling algorithms.
This paper presents a heavy-traffic analysis of the behavior of a single-server queue under an Earliest-Deadline-First (EDF) scheduling policy in which customers have deadlines and are served only until their deadlines elapse. The performance of the system is measured by the fraction of reneged work (the residual work lost due to elapsed deadlines) which is shown to be minimized by the EDF policy. The evolution of the lead time distribution of customers in queue is described by a measure-valued process. The heavy traffic limit of this (properly scaled) process is shown to be a deterministic function of the limit of the scaled workload process which, in turn, is identified to be a doubly reflected Brownian motion. This paper complements previous work by Doytchinov, Lehoczky and Shreve on the EDF discipline in which customers are served to completion even after their deadlines elapse. The fraction of reneged work in a heavily loaded system and the fraction of late work in the corresponding system without reneging are compared using explicit formulas based on the heavy traffic approximations. The formulas are validated by simulation results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا