ترغب بنشر مسار تعليمي؟ اضغط هنا

Removal and mixing of the coronal gas from satellites in galaxy groups: cooling the intragoup gas

322   0   0.0 ( 0 )
 نشر من قبل Jesus Zavala Franco
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jesus Zavala




اسأل ChatGPT حول البحث

The existence of an extended hot gaseous corona surrounding clusters, groups and massive galaxies is well established by observational evidence and predicted by current theories of galaxy formation. When a small galaxy collides with a larger one, their coronae are the first to interact, producing disturbances that remove gas from the smaller system and settle it into the corona of the larger one. For a Milky-Way-size galaxy merging into a low-mass group, ram pressure stripping and the Kelvin-Helmholtz instability are the most relevant of these disturbances. We argue that the turbulence generated by the latter mixes the material of both coronae in the wake of the orbiting satellite creating a warm phase mixture with a cooling time a factor of several shorter than that of the ambient intragroup gas. We reach this conclusion using analytic estimates, as well as adiabatic and dissipative high resolution numerical simulations of a spherical corona subject to the ablation process of a constant velocity wind with uniform density and temperature. Although this is a preliminary analysis, our results are promising and we speculate that the mixture could potentially trigger in situ star formation and/or be accreted into the central galaxy as a cold gas flow resulting in a new mode of star formation in galaxy groups and clusters.


قيم البحث

اقرأ أيضاً

156 - M. Sun , N. Sehgal , G. M. Voit 2010
Recent measurements of the Sunyaev-Zeldovich (SZ) angular power spectrum from the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT) demonstrate the importance of understanding baryon physics when using the SZ power spectrum to cons train cosmology. This is challenging since roughly half of the SZ power at l=3000 is from low-mass systems with 10^13 h^-1 M_sun < M_500 < 1.5x10^14 h^-1 M_sun, which are more difficult to study than systems of higher mass. We present a study of the thermal pressure content for a sample of local galaxy groups from Sun et al. (2009). The group Y_{sph, 500} - M_500 relation agrees with the one for clusters derived by Arnaud et al. (2010). The group median pressure profile also agrees with the universal pressure profile for clusters derived by Arnaud et al. (2010). With this in mind, we briefly discuss several ways to alleviate the tension between the measured low SZ power and the predictions from SZ templates.
A small survey of the UV-absorbing gas in 12 low-$z$ galaxy groups has been conducted using the Cosmic Origins Spectrograph (COS) on-board the Hubble Space Telescope (HST). Targets were selected from a large, homogeneously-selected sample of groups f ound in the Sloan Digital Sky Survey (SDSS). A critical selection criterion excluded sight lines that pass close ($<1.5$ virial radii) to a group galaxy, to ensure absorber association with the group as a whole. Deeper galaxy redshift observations are used both to search for closer galaxies and also to characterize these $10^{13.5}$ to $10^{14.5} M_{odot}$ groups, the most massive of which are highly-virialized with numerous early-type galaxies (ETGs). This sample also includes two spiral-rich groups, not yet fully-virialized. At group-centric impact parameters of 0.3-2 Mpc, these $mathrm{S/N}=15$-30 spectra detected HI absorption in 7 of 12 groups; high (OVI) and low (SiIII) ion metal lines are present in 2/3 of the absorption components. None of the three most highly-virialized, ETG-dominated groups are detected in absorption. Covering fractions $gtrsim50$% are seen at all impact parameters probed, but do not require large filling factors despite an enormous extent. Unlike halo clouds in individual galaxies, group absorbers have radial velocities which are too low to escape the group potential well without doubt. This suggests that these groups are closed boxes for galactic evolution in the current epoch. Evidence is presented that the cool and warm group absorbers are not a pervasive intra-group medium (IGrM), requiring a hotter ($Tsim10^6$ to $10^7$ K) IGrM to be present to close the baryon accounting.
We use the first 100 sq. deg. of overlap between the Kilo-Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey to determine the galaxy halo mass of ~10,000 spectroscopically-confirmed satellite galaxies in massive ($M > 10^{13}h^{-1}{r m M}_odot$) galaxy groups. Separating the sample as a function of projected distance to the group centre, we jointly model the satellites and their host groups with Navarro-Frenk-White (NFW) density profiles, fully accounting for the data covariance. The probed satellite galaxies in these groups have total masses $log M_{rm sub} /(h^{-1}{rm M}_odot) approx 11.7 - 12.2$ consistent across group-centric distance within the errorbars. Given their typical stellar masses, $log M_{rm star,sat}/(h^{-2}{rm M}_odot) sim 10.5$, such total masses imply stellar mass fractions of $M_{rm star,sat} /M_{rm sub} approx 0.04 h^{-1}$ . The average subhalo hosting these satellite galaxies has a mass $M_{rm sub} sim 0.015M_{rm host}$ independent of host halo mass, in broad agreement with the expectations of structure formation in a $Lambda$CDM universe.
We present an analysis of the neutral hydrogen (HI) content and distribution of galaxies in groups as a function of their parent dark matter halo mass. The Arecibo Legacy Fast ALFA survey alpha.40 data release allows us, for the first time, to study the HI properties of over 740 galaxy groups in the volume of sky common to the SDSS and ALFALFA surveys. We assigned ALFALFA HI detections a group membership based on an existing magnitude/volume-limited SDSS DR7 group/cluster catalog. Additionally, we assigned group proximity membership to HI detected objects whose optical counterpart falls below the limiting optical magnitude--thereby not contributing substantially to the estimate of the group stellar mass, but significantly to the total group HI mass. We find that only 25% of the HI detected galaxies reside in groups or clusters, in contrast to approximately half of all optically detected galaxies. Further, we plot the relative positions of optical and HI detections in groups as a function of parent dark matter halo mass to reveal strong evidence that HI is being processed in galaxies as a result of the group environment: as optical membership increases, groups become increasingly deficient of HI rich galaxies at their center and the HI distribution of galaxies in the most massive groups starts to resemble the distribution observed in comparatively more extreme cluster environments. We find that the lowest HI mass objects lose their gas first as they are processed in the group environment, and it is evident that the infall of gas rich objects is important to the continuing growth of large scale structure at the present epoch, replenishing the neutral gas supply of groups. Finally, we compare our results to those of cosmological simulations and find that current models cannot simultaneously predict the HI selected halo occupation distribution for both low and high mass halos.
We report the first characterization of an extended outflow of high ionized gas in the Circinus Galaxy by means of the coronal line [FeVII] $lambda$6087 AA. This emission is located within the ionization cone already detected in the [OIII] $lambda$50 07 AA line and is found to extend up to a distance of 700 pc from the AGN. The gas distribution appears clumpy, with several knots of emission. Its kinematics is complex, with split profiles and line centroids shifted from the systemic velocity. The physical conditions of the gas show that the extended coronal emission is likely the remnants of shells inflated by the passage of a radio-jet. This scenario is supported by extended X-ray emission, which is spatially coincident with the morphology and extension of the [FeVII] $lambda$6087~AA gas in the NW side of the galaxy. The extension of the coronal gas in the Circinus galaxy is unique among active galaxies and demonstrates the usefulness of coronal lines for tracing the shock ionization component in these objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا