ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Investigations of the nature of the Sco X-1 like sources

48   0   0.0 ( 0 )
 نشر من قبل Monika Balucinska-Church
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. J. Church




اسأل ChatGPT حول البحث

We present results of spectral investigations of the Sco X-1 like Z-track sources Sco X-1, GX 349+2 and GX 17+2 based on Rossi-XTE observations using an extended accretion disk corona model. The results are compared with previous results for the Cyg X-2 like group: Cyg X-2, GX 340+0 and GX 5-1 and a general model for the Z-track sources proposed. On the normal branch, the Sco-like and Cyg-like sources are similar, the results indicating an increase of mass accretion rate Mdot between soft and hard apex, not as in the standard view that this increases around the Z. In the Cyg-like sources, increasing Mdot causes the neutron star temperature kT to increase from ~1 to ~2 keV. At the lower kT, the radiation pressure is small, but at the higher kT, the emitted flux of the neutron star is several times super-Eddington and the high radiation pressure disrupts the inner disk launching the relativistic jets observed on the upper normal and horizontal branches. In the Sco-like sources, the main physical difference is the high kT of more than 2 keV on all parts of the Z-track suggesting that jets are always possible, even on the flaring branch. The flaring branch in the Cyg-like sources is associated with release of energy on the neutron star consistent with unstable nuclear burning. The Sco-like sources are very different as flaring appears to be a combination of unstable burning and an increase of Mdot which makes flaring much stronger. Analysis of 15 years or RXTE ASM data on all 6 classic Z-track sources shows the high rate and strength of flaring in the Sco-like sources suggesting that continual release of energy heats the neutron star causing the high kT. A Sco X-1 observation with unusually little flaring supports this. GX 17+2 appears to be transitional between the Cyg and Sco-like types. Our results do not support the suggestion that Cyg or Sco-like nature is determined by luminosity.

قيم البحث

اقرأ أيضاً

Based on the results of applying the extended ADC emission model for low mass X-ray binaries to three Z-track sources: GX340+0, GX5-1 and CygX-2, we propose an explanation of the CygnusX-2 like Z-track sources. The Normal Branch is dominated by the i ncreasing radiation pressure of the neutron star caused by a mass accretion rate that increases between the soft apex and the hard apex. The radiation pressure continues to increase on the Horizontal Branch becoming several times super-Eddington. We suggest that this disrupts the inner accretion disk and that part of the accretion flow is diverted vertically forming jets which are detected by their radio emission on this part of the Z-track. We thus propose that high radiation pressure is the necessary condition for the launching of jets. On the Flaring Branch there is a large increase in the neutron star blackbody luminosity at constant mass accretion rate indicating an additional energy source on the neutron star. We find that there is good agreement between the mass accretion rate per unit emitting area of the neutron star mdot at the onset of flaring and the theoretical critical value at which burning becomes unstable. We thus propose that flaring in the CygnusX-2 like sources consists of unstable nuclear burning. Correlation of measurements of kilohertz QPO frequencies in all three sources with spectral fitting results leads to the proposal that the upper kHz QPO is an oscillation always taking place at the inner accretion disk edge, the radius of which increases due to disruption of the disk by the high radiation pressure of the neutron star.
We present results from four new broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 ($L_{rm{X}} > 10^{40}$ erg/s), performed by $Suzaku$ and $NuSTAR$ in coordination. Combined with the archival data, we now have br oadband observations of this remarkable source from six separate epochs. Two of these new observations probe lower fluxes than seen previously, allowing us to extend our knowledge of the broadband spectral variability exhibited. The spectra are well fit by two thermal blackbody components, which dominate the emission below 10 keV, as well as a steep ($Gamma sim 3.5$) powerlaw tail which dominates above $sim$15 keV. Remarkably, while the 0.3-10.0 keV flux varies by a factor of $sim$3 between all these epochs, the 15-40 keV flux varies by only $sim$20%. Although the spectral variability is strongest in the $sim$1-10 keV band, both of the thermal components are required to vary when all epochs are considered. We also re-visit the search for iron absorption features, leveraging the high-energy $NuSTAR$ data to improve our sensitivity to extreme velocity outflows in light of the ultra-fast outflow recently detected in NGC 1313 X-1. Iron absorption from a similar outflow along our line of sight can be ruled out in this case. We discuss these results in the context of super-Eddington accretion models that invoke a funnel-like geometry for the inner flow, and propose a scenario in which we have an almost face-on view of a funnel that expands to larger radii with increasing flux, resulting in an increasing degree of geometrical collimation for the emission from intermediate temperature regions.
The flux-flux plot (FFP) method can provide model-independent clues regarding the X-ray variability of active galactic nuclei. To use it properly, the bin size of the light curves should be as short as possible, provided the average counts in the lig ht curve bins are larger than $sim 200$. We apply the FFP method to the 2013, simultaneous XMM-Newton and NuSTAR observations of the Seyfert galaxy MCG$-$6-30-15, in the 0.3-40 keV range. The FFPs above $sim 1.6$ keV are well-described by a straight line. This result rules out spectral slope variations and the hypothesis of absorption driven variability. Our results are fully consistent with a power-law component varying in normalization only, with a spectral slope of $sim 2$, plus a variable, relativistic reflection arising from the inner accretion disc around a rotating black hole. We also detect spectral components which remain constant over $sim 4.5$ days (at least). At energies above $sim 1.5$ keV, the stable component is consistent with reflection from distant, neutral material. The constant component at low energies is consistent with a blackbody spectrum of $kT_{rm BB} sim 100$ eV. The fluxes of these components are $sim 10-20%$ of the average continuum flux (in the respective bands). They should always be included in the models that are used to fit the spectrum of the source. The FFPs below 1.6 keV are non-linear, which could be due to the variable warm absorber in this source.
We have carried out a systematic analysis of the nearby (z=0.0279) active galaxy Zw 229.015 using multi-epoch, multi-instrument and deep pointed observations with XMM-Newton, Suzaku, Swift and NuSTAR. Spectral and temporal variability are examined in detail on both the long (weeks-to-years) and short (hours) timescales. A deep Suzaku observation of the source shows two distinct spectral states; a bright-soft state and a dim-hard state in which changes in the power law component account for the differences. Partial covering, blurred reflection and soft Comptonisation models describe the X-ray spectra comparably well, but the smooth, rather featureless, spectrum may be favouring the soft Comptonisation scenario. Moreover, independent of the spectral model, the observed spectral variability is ascribed to the changes in the power law continuum only and do not require changes in the properties of the absorber or blurred reflector incorporated in the other scenarios. The multi-epoch observations between 2009 and 2018 can be described in similar fashion. This could be understood if the primary emission is originating at a large distance from a standard accretion disc or if the disc is optically thin and geometrically thick as recently proposed for Zw 229.015. Our investigation shows that Zw 229.015 behaves similar to sources like Akn 120 and Mrk 530, that exhibit a strong soft-excess, but weak Compton hump and Fe K${alpha}$ emission.
We study hard X-ray emission of the brightest accreting neutron star Sco X-1 with INTEGRAL observatory. Up to now INTEGRAL have collected ~4 Msec of deadtime corrected exposure on this source. We show that hard X-ray tail in time average spectrum of Sco X-1 has a power law shape without cutoff up to energies ~200-300 keV. An absence of the high energy cutoff does not agree with the predictions of a model, in which the tail is formed as a result of Comptonization of soft seed photons on bulk motion of matter near the compact object. The amplitude of the tail varies with time with factor more than ten with the faintest tail at the top of the so-called flaring branch of its color-color diagram. We show that the minimal amplitude of the power law tail is recorded when the component, corresponding to the innermost part of optically thick accretion disk, disappears from the emission spectrum. Therefore we show that the presence of the hard X-ray tail may be related with the existence of the inner part of the optically thick disk. We estimate cooling time for these energetic electrons and show that they can not be thermal. We propose that the hard X-ray tail emission originates as a Compton upscattering of soft seed photons on electrons, which might have initial non-thermal distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا