ترغب بنشر مسار تعليمي؟ اضغط هنا

Corrigendum to Intersection homology with field coefficients: K-Witt spaces and K-Witt bordism

119   0   0.0 ( 0 )
 نشر من قبل Greg Friedman
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Greg Friedman




اسأل ChatGPT حول البحث

This note corrects an error in the char(K)=2 case of the authors computation of the bordism groups of K-Witt spaces for the field K.



قيم البحث

اقرأ أيضاً

We establish a fibre sequence relating the classical Grothendieck-Witt theory of a ring $R$ to the homotopy $mathrm{C}_2$-orbits of its K-theory and Ranickis original (non-periodic) symmetric L-theory. We use this fibre sequence to remove the assumpt ion that 2 is a unit in $R$ from various results about Grothendieck-Witt groups. For instance, we solve the homotopy limit problem for Dedekind rings whose fraction field is a number field, calculate the various flavours of Grothendieck-Witt groups of $mathbb{Z}$, show that the Grothendieck-Witt groups of rings of integers in number fields are finitely generated, and that the comparison map from quadratic to symmetric Grothendieck-Witt theory of Noetherian rings of global dimension $d$ is an equivalence in degrees $geq d+3$. As an important tool, we establish the hermitian analogue of Quillens localisation-devissage sequence for Dedekind rings and use it to solve a conjecture of Berrick-Karoubi.
We study the algebraic $K$-theory and Grothendieck-Witt theory of proto-exact categories of vector bundles over monoid schemes. Our main results are the complete description of the algebraic $K$-theory space of an integral monoid scheme $X$ in terms of its Picard group $operatorname{Pic}(X)$ and pointed monoid of regular functions $Gamma(X, mathcal{O}_X)$ and a description of the Grothendieck-Witt space of $X$ in terms of an additional involution on $operatorname{Pic}(X)$. We also prove space-level projective bundle formulae in both settings.
164 - Greg Friedman 2019
We indicate two short proofs of the Goresky-MacPherson topological invariance of intersection homology. One proof is very short but requires the Goresky-MacPherson support and cosupport axioms; the other is slightly longer but does not require these axioms and so is adaptable to more general perversities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا