ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear X-ray properties of the peculiar radio-loud hidden AGN 4C+29.30

147   0   0.0 ( 0 )
 نشر من قبل Malgorzata Sobolewska
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. A. Sobolewska




اسأل ChatGPT حول البحث

We present results from a study of a nuclear emission of a nearby radio galaxy, 4C+29.30, over a broad 0.5-200 keV X-ray band. This study used new XMM-Newton (~17 ksec) and Chandra (~300 ksec) data, and archival Swift/BAT data from the 58-month catalog. The hard (>2 keV) X-ray spectrum of 4C+29.30 can be decomposed into an intrinsic hard power-law (Gamma ~ 1.56) modified by a cold absorber with an intrinsic column density N_{H,z} ~ 5x10^{23} cm^{-2}, and its reflection (|Omega/2pi| ~ 0.3) from a neutral matter including a narrow iron Kalpha emission line at the rest frame energy ~6.4 keV. The reflected component is less absorbed than the intrinsic one with an upper limit on the absorbing column of N^{refl}_{H,z} < 2.5x10^{22} cm^{-2}. The X-ray spectrum varied between the XMM-Newton and Chandra observations. We show that a scenario invoking variations of the normalization of the power-law is favored over a model with variable intrinsic column density. X-rays in the 0.5-2 keV band are dominated by diffuse emission modeled with a thermal bremsstrahlung component with temperature ~0.7 keV, and contain only a marginal contribution from the scattered power-law component. We hypothesize that 4C+29.30 belongs to a class of `hidden AGN containing a geometrically thick torus. However, unlike the majority of them, 4C+29.30 is radio-loud. Correlations between the scattering fraction and Eddington luminosity ratio, and the one between black hole mass and stellar velocity dispersion, imply that 4C+29.30 hosts a black hole with ~10^8 M_{Sun} mass.



قيم البحث

اقرأ أيضاً

The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cut-off of 183$_{-35}^{+51}$ keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed with an inner radius of $R_mathrm{in}=4-180,R_mathrm{g}$. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.
We report results from our deep Chandra X-ray observations of a nearby radio galaxy, 4C+29.30 (z=0.0647). The Chandra image resolves structures on sub-arcsec to arcsec scales, revealing complex X-ray morphology and detecting the main radio features: the nucleus, a jet, hotspots, and lobes. The nucleus is absorbed (N(H)=3.95 (+0.27/-0.33)x10^23 atoms/cm^2) with an unabsorbed luminosity of L(2-10 keV) ~ (5.08 +/-0.52) 10^43 erg/s characteristic of Type 2 AGN. Regions of soft (<2 keV) X-ray emission that trace the hot interstellar medium (ISM) are correlated with radio structures along the main radio axis indicating a strong relation between the two. The X-ray emission beyond the radio source correlates with the morphology of optical line-emitting regions. We measured the ISM temperature in several regions across the galaxy to be kT ~ 0.5 with slightly higher temperatures (of a few keV) in the center and in the vicinity of the radio hotspots. Assuming these regions were heated by weak shocks driven by the expanding radio source, we estimated the corresponding Mach number of 1.6 in the southern regions. The thermal pressure of the X-ray emitting gas in the outermost regions suggest the hot ISM is slightly under-pressured with respect to the cold optical-line emitting gas and radio-emitting plasma, which both seem to be in a rough pressure equilibrium. We conclude that 4C+29.30 displays a complex view of interactions between the jet-driven radio outflow and host galaxy environment, signaling feedback processes closely associated with the central active nucleus.
We present a study of the central engine in the broad-line radio galaxy 3C120 using a multi-epoch analysis of a deep XMM-Newton observation and two deep Suzaku pointings (in 2012). In order to place our spectral data into the context of the disk-disr uption/jet-ejection cycles displayed by this object, we monitor the source in the UV/X-ray bands, and in the radio band. We find three statistically acceptable spectral models, a disk-reflection model, a jet-model and a jet+disk model. Despite being good descriptions of the data, the disk-reflection model violates the radio constraints on the inclination, and the jet-model has a fine-tuning problem, requiring a jet contribution exceeding that expected. Thus, we argue for a composite jet+disk model. Within the context of this model, we verify the basic predictions of the jet-cycle paradigm, finding a truncated/refilling disk during the Suzaku observations and a complete disk extending down to the innermost stable circular orbit (ISCO) during the XMM-Newton observation. The idea of a refilling disk is further supported by the detection of the ejection of a new jet knot approximately one month after the Suzaku pointings. We also discover a step-like event in one of the Suzaku pointings in which the soft band lags the hard band. We suggest that we are witnessing the propagation of a disturbance from the disk into the jet on a timescale set by the magnetic field.
Using observations obtained with the LOw Fequency ARray (LOFAR), the Westerbork Synthesis Radio Telescope (WSRT) and archival Very Large Array (VLA) data, we have traced the radio emission to large scales in the complex source 4C 35.06 located in the core of the galaxy cluster Abell 407. At higher spatial resolution (~4), the source was known to have two inner radio lobes spanning 31 kpc and a diffuse, low-brightness extension running parallel to them, offset by about 11 kpc (in projection). At 62 MHz, we detect the radio emission of this structure extending out to 210 kpc. At 1.4 GHz and intermediate spatial resolution (~30), the structure appears to have a helical morphology. We have derived the characteristics of the radio spectral index across the source. We show that the source morphology is most likely the result of at least two episodes of AGN activity separated by a dormant period of around 35 Myr. The AGN is hosted by one of the galaxies located in the cluster core of Abell 407. We propose that it is intermittently active as it moves in the dense environment in the cluster core. Using LOFAR, we can trace the relic plasma from that episode of activity out to greater distances from the core than ever before. Using the the WSRT, we detect HI in absorption against the center of the radio source. The absorption profile is relatively broad (FWHM of 288 km/s), similar to what is found in other clusters. Understanding the duty cycle of the radio emission as well as the triggering mechanism for starting (or restarting) the radio-loud activity can provide important constraints to quantify the impact of AGN feedback on galaxy evolution. The study of these mechanisms at low frequencies using morphological and spectral information promises to bring new important insights in this field.
Chandra X-ray observations of the high redshift (z =1.532) radio-loud quasar 3C270.1 in 2008 February show the nucleus to have a power-law spectrum, Gamma = 1.66 +/- 0.08, typical of a radio-loud quasar, and a marginally-detected Fe Kalpha emission l ine. The data also reveal extended X-ray emission, about half of which is associated with the radio emission from this source. The southern emission is co-spatial with the radio lobe and peaks at the position of the double radio hotspot. Modeling this hotspot including Spitzer upper limits rules out synchrotron emission from a single power-law population of electrons, favoring inverse-Compton emission with a field of ~11nT, roughly a third of the equipartition value. The northern emission is concentrated close to the location of a 40 deg. bend where the radio jet is presumed to encounter external material. It can be explained by inverse Compton emission involving Cosmic Microwave Background photons with a field of ~3nT, roughly a factor of nine below the equipartition value. The remaining, more diffuse X-ray emission is harder (HR=-0.09 +/- 0.22). With only 22.8+/-5.6 counts, the spectral form cannot be constrained. Assuming thermal emission with a temperature of 4 keV yields an estimate for the luminosity of 1.8E44 erg/s, consistent with the luminosity-temperature relation of lower-redshift clusters. However deeper Chandra X-ray observations are required to delineate the spatial distribution, and better constrain the spectrum of the diffuse emission to verify that we have detected X-ray emission from a high-redshift cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا