ترغب بنشر مسار تعليمي؟ اضغط هنا

A non-parametric mixture model for topic modeling over time

58   0   0.0 ( 0 )
 نشر من قبل Ahmed Hefny
 تاريخ النشر 2012
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A single, stationary topic model such as latent Dirichlet allocation is inappropriate for modeling corpora that span long time periods, as the popularity of topics is likely to change over time. A number of models that incorporate time have been proposed, but in general they either exhibit limited forms of temporal variation, or require computationally expensive inference methods. In this paper we propose non-parametric Topics over Time (npTOT), a model for time-varying topics that allows an unbounded number of topics and exible distribution over the temporal variations in those topics popularity. We develop a collapsed Gibbs sampler for the proposed model and compare against existing models on synthetic and real document sets.

قيم البحث

اقرأ أيضاً

Non-negative matrix factorization (NMF) is a technique for finding latent representations of data. The method has been applied to corpora to construct topic models. However, NMF has likelihood assumptions which are often violated by real document cor pora. We present a double parametric bootstrap test for evaluating the fit of an NMF-based topic model based on the duality of the KL divergence and Poisson maximum likelihood estimation. The test correctly identifies whether a topic model based on an NMF approach yields reliable results in simulated and real data.
Despite many years of research into latent Dirichlet allocation (LDA), applying LDA to collections of non-categorical items is still challenging. Yet many problems with much richer data share a similar structure and could benefit from the vast litera ture on LDA. We propose logistic LDA, a novel discriminative variant of latent Dirichlet allocation which is easy to apply to arbitrary inputs. In particular, our model can easily be applied to groups of images, arbitrary text embeddings, and integrates well with deep neural networks. Although it is a discriminative model, we show that logistic LDA can learn from unlabeled data in an unsupervised manner by exploiting the group structure present in the data. In contrast to other recent topic models designed to handle arbitrary inputs, our model does not sacrifice the interpretability and principled motivation of LDA.
63 - Hao Zhang , Bo Chen , Dandan Guo 2018
To train an inference network jointly with a deep generative topic model, making it both scalable to big corpora and fast in out-of-sample prediction, we develop Weibull hybrid autoencoding inference (WHAI) for deep latent Dirichlet allocation, which infers posterior samples via a hybrid of stochastic-gradient MCMC and autoencoding variational Bayes. The generative network of WHAI has a hierarchy of gamma distributions, while the inference network of WHAI is a Weibull upward-downward variational autoencoder, which integrates a deterministic-upward deep neural network, and a stochastic-downward deep generative model based on a hierarchy of Weibull distributions. The Weibull distribution can be used to well approximate a gamma distribution with an analytic Kullback-Leibler divergence, and has a simple reparameterization via the uniform noise, which help efficiently compute the gradients of the evidence lower bound with respect to the parameters of the inference network. The effectiveness and efficiency of WHAI are illustrated with experiments on big corpora.
We propose new algorithms for topic modeling when the number of topics is unknown. Our approach relies on an analysis of the concentration of mass and angular geometry of the topic simplex, a convex polytope constructed by taking the convex hull of v ertices representing the latent topics. Our algorithms are shown in practice to have accuracy comparable to a Gibbs sampler in terms of topic estimation, which requires the number of topics be given. Moreover, they are one of the fastest among several state of the art parametric techniques. Statistical consistency of our estimator is established under some conditions.
We report on the potential for using algorithms for non-negative matrix factorization (NMF) to improve parameter estimation in topic models. While several papers have studied connections between NMF and topic models, none have suggested leveraging th ese connections to develop new algorithms for fitting topic models. Importantly, NMF avoids the sum-to-one constraints on the topic model parameters, resulting in an optimization problem with simpler structure and more efficient computations. Building on recent advances in optimization algorithms for NMF, we show that first solving the NMF problem then recovering the topic model fit can produce remarkably better fits, and in less time, than standard algorithms for topic models. While we focus primarily on maximum likelihood estimation, we show that this approach also has the potential to improve variational inference for topic models. Our methods are implemented in the R package fastTopics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا