ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision Measurement of Transition Matrix Elements via Light Shift Cancellation

98   0   0.0 ( 0 )
 نشر من قبل Creston Herold
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for accurate determination of atomic transition matrix elements at the 10^{-3} level. Measurements of the ac Stark (light) shift around magic-zero wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s-6p matrix elements in rubidium by measuring the light shift around the 421 nm and 423 nm zeros with a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3236(9) e a_0 and 0.5230(8) e a_0 for the 5s-6p_{1/2} and 5s-6p_{3/2} elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information.

قيم البحث

اقرأ أيضاً

Motivated by recent interest in their applications, we report a systematic study of Cs atomic properties calculated by a high-precision relativistic all-order method. Excitation energies, reduced matrix elements, transition rates, and lifetimes are d etermined for levels with principal quantum numbers $n leq 12$ and orbital angular momentum quantum numbers $l leq 3$. Recommended values and estimates of uncertainties are provided for a number of electric-dipole transitions and the electric dipole polarizabilities of the $ns$, $np$, and $nd$ states. We also report a calculation of the electric quadrupole polarizability of the ground state. We display the dynamic polarizabilities of the $6s$ and $7p$ states for optical wavelengths between 1160 nm and 1800 nm and identify corresponding magic wavelengths for the $6s-7p_{1/2}$, $6s-7p_{3/2}$ transitions. The values of relevant matrix elements needed for polarizability calculations at other wavelengths are provided.
We report a new measurement of the $n=2$ Lamb shift in Muonium using microwave spectroscopy. Our result of $1047.2(2.3)_textrm{stat}(1.1)_textrm{syst}$ MHz comprises an order of magnitude improvement upon the previous best measurement. This value mat ches the theoretical calculation within one standard deviation allowing us to set limits on CPT violation in the muonic sector, as well as on new physics coupled to muons and electrons which could provide an explanation of the muon $g-2$ anomaly.
We define and measure the ratio (R) of the vector ac-Stark effect (or light shift) in the 6S_1/2 and 5D_3/2 states of a single trapped barium ion to 0.2% accuracy at two different off-resonant wavelengths. We earlier found R = -11.494(13) at 514.531n m and now report the value at 1111.68nm, R = +0.4176(8). These observations together yield a value of the <5D||er||4F> matrix element, previously unknown in the literature. Also, comparison of our results with an ab initio calculation of dynamic polarizability would yield a new test of atomic theory and improve the understanding of atomic structure needed to interpret a proposed atomic parity violation experiment.
We experimentally investigate the dynamic instability of Bose-Einstein condensates in an optical ring resonator that is asymmetrically pumped in both directions. We find that, beyond a critical resonator-pump detuning, the system becomes stable regar dless of the pump strength. Phase diagrams and quenching curves are presented and described by numerical simulations. We discuss a physical explanation based on a geometric interpretation of the underlying nonlinear equations of motion.
We present combined measurements of the spatially-resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, whilst the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا