ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of High Performance Electron Beam Switching System for Swiss Free Electron Laser at PSI

177   0   0.0 ( 0 )
 نشر من قبل Frederic Le Pimpec
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A compact X-ray Free Electron Laser (SwissFEL) is under development at the Paul Scherrer Institute. To increase facility efficiency the main linac will operate in two electron bunch mode. The two bunches are separated in time by 28 ns and sent to two undulator lines. The combination of two beam lines should produce short X-ray pulses covering wavelength range from 1 to 70 {AA} with submicron position stability. To separate the two bunches, a novel electron beam switching system is being developed. The total deflection is achieved with a combination of high Q-factor resonant deflector magnet, followed by a DC septum magnet. The shot-to-shot deflection stability of the entire switching system should be <+/-10 ppm in amplitude and +/-100 ps in time, values which present severe measurement difficulties. Deflection magnets requirements, development and results of the kicker prototype are presented.



قيم البحث

اقرأ أيضاً

Studies of a broad bandwidth, two-colour FEL amplifier using one monoenergetic electron beam are presented. The two-colour FEL interaction is achieved using a series of undulator modules alternately tuned to two well-separated resonant frequencies. U sing the broad bandwidth FEL simulation code Puffin, the electron beam is shown to bunch strongly and simultaneously at the two resonant frequencies. Electron bunching components are also generated at the sum and difference of the resonant frequencies.
Plasma driven particle accelerators represent the future of compact accelerating machines and Free Electron Lasers are going to benefit from these new technologies. One of the main issue of this new approach to FEL machines is the design of the trans fer line needed to match of the electron-beam with the magnetic undulators. Despite the reduction of the chromaticity of plasma beams is one of the main goals, the target of this line is to be effective even in cases of beams with a considerable value of chromaticity. The method here explained is based on the code GIOTTO [1] that works using a homemade genetic algorithm and that is capable of finding optimal matching line layouts directly using a full 3D tracking code.
The Linac Coherent Light Source changes configurations multiple times per day, necessitating fast tuning strategies to reduce setup time for successive experiments. To this end, we employ a Bayesian approach to transport optics tuning to optimize gro ups of quadrupole magnets. We use a Gaussian process to provide a probabilistic model of the machine response with respect to control parameters from a modest number of samples. Subsequent samples are selected during optimization using a statistical test combining the model prediction and uncertainty. The model parameters are fit from archived scans, and correlations between devices are added from a simple beam transport model. The result is a sample-efficient optimization routine, which we show significantly outperforms existing optimizers.
In this paper, a division-of-amplitude photopolarimeter (DOAP) for measuring the polarization state of free-electron laser (FEL) pulse is described. The incident FEL beam is divided into four separate beams, and four Stokes parameters can be measured in a single-shot. In the crossed-planar undulators experiment at Shanghai deep ultraviolet FEL test facility, this DOAP instrument constructed in house responses accurately and timely while the polarization-state of fully coherent FEL pulses are switched, which is helpful for confirming the crossed-planar undulators technique for short-wavelength FELs.
Fast polarization switching of light sources is required over a wide spectral range to investigate the symmetry of matter. In this Letter, we report the first experimental demonstration of the crossed-planar undulator technique at a seeded free-elect ron laser, which holds great promise for the full control and fast switching of the polarization of short-wavelength radiation. In the experiment, the polarization state of the coherent radiation at the 2nd harmonic of the seed laser is switched successfully. The experiment results confirm the theory, and pave the way for applying the crossed-planar undulator technique for the seeded X-ray free electron lasers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا