ﻻ يوجد ملخص باللغة العربية
Quantum chromodynamics (QCD) is the theory of subnuclear physics, aiming at mod- eling the strong nuclear force, which is responsible for the interactions of nuclear particles. Lattice QCD (LQCD) is the corresponding discrete formulation, widely used for simula- tions. The computational demand for the LQCD is tremendous. It has played a role in the history of supercomputers, and has also helped defining their future. Designing efficient LQCD codes that scale well on large (probably hybrid) supercomputers requires to express many levels of parallelism, and then to explore different algorithmic solutions. While al- gorithmic exploration is the key for efficient parallel codes, the process is hampered by the necessary coding effort. We present in this paper a domain-specific language, QIRAL, for a high level expression of parallel algorithms in LQCD. Parallelism is expressed through the mathematical struc- ture of the sparse matrices defining the problem. We show that from these expressions and from algorithmic and preconditioning formulations, a parallel code can be automatically generated. This separates algorithms and mathematical formulations for LQCD (that be- long to the field of physics) from the effective orchestration of parallelism, mainly related to compilation and optimization for parallel architectures.
Generating multimedia streams, such as in a netradio, is a task which is complex and difficult to adapt to every users needs. We introduce a novel approach in order to achieve it, based on a dedicated high-level functional programming language, calle
Though statistical analyses are centered on research questions and hypotheses, current statistical analysis tools are not. Users must first translate their hypotheses into specific statistical tests and then perform API calls with functions and param
This paper describes the design and implementation of CRAQL (Composable Repository Analysis and Query Language), a new query language for source code. The growth of source code mining and its applications suggest the need for a query language that ca
Backtracking (i.e., reverse execution) helps the user of a debugger to naturally think backwards along the execution path of a program, and thinking backwards makes it easy to locate the origin of a bug. So far backtracking has been implemented mostl
Analyzing Ethereum bytecode, rather than the source code from which it was generated, is a necessity when: (1) the source code is not available (e.g., the blockchain only stores the bytecode), (2) the information to be gathered in the analysis is onl