ﻻ يوجد ملخص باللغة العربية
It was conjectured by McKernan and Shokurov that for all Mori contractions from X to Y of given dimensions, for any positive epsilon there is a positive delta, such that if X is epsilon-log terminal, then Y is delta-log terminal. We prove this conjecture in the toric case and discuss the dependence of delta on epsilon, which seems mysterious.
This paper shows that Mustata-Nakamuras conjecture holds for pairs consisting of a smooth surface and a multiideal with a real exponent over the base field of positive characteristic. As corollaries, we obtain the ascending chain condition of the min
Let $Gamma$ be a finite set, and $X i x$ a fixed klt germ. For any lc germ $(X i x,B:=sum_{i} b_iB_i)$ such that $b_iin Gamma$, Nakamuras conjecture, which is equivalent to the ACC conjecture for minimal log discrepancies for fixed germs, predicts th
We prove the existence of $n$-complements for pairs with DCC coefficients and the ACC for minimal log discrepancies of exceptional singularities. In order to prove these results, we develop the theory of complements for real coefficients. We introduc
Let $C$ be a nodal curve, and let $E$ be a union of semistable subcurves of $C$. We consider the problem of contracting the connected components of $E$ to singularities in a way that preserves the genus of $C$ and makes sense in families, so that thi
In this paper we study singularities in arbitrary characteristic. We propose Finite Determination Conjecture for Mather-Jacobian minimal log discrepancies in terms of jet schemes of a singularity. The conjecture is equivalent to the boundedness of th