ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlled catch and release of microwave photon states

44   0   0.0 ( 0 )
 نشر من قبل Yi Yin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum behavior of superconducting qubits coupled to resonators is very similar to that of atoms in optical cavities [1, 2], in which the resonant cavity confines photons and promotes strong light-matter interactions. The cavity end-mirrors determine the performance of the coupled system, with higher mirror reflectivity yielding better quantum coherence, but higher mirror transparency giving improved measurement and control, forcing a compromise. An alternative is to control the mirror transparency, enabling switching between long photon lifetime during quantum interactions and large signal strength when performing measurements. Here we demonstrate the superconducting analogue, using a quantum system comprising a resonator and a qubit, with variable coupling to a measurement transmission line. The coupling can be adjusted through zero to a photon emission rate 1,000 times the intrinsic photon decay rate. We use this system to control photons in coherent states as well as in non-classical Fock states, and dynamically shape the waveform of released photons. This has direct applications to circuit quantum electrodynamics [3], and may enable high-fidelity quantum state transfer between distant qubits, for which precisely-controlled waveform shaping is a critical and non-trivial requirement [4, 5].

قيم البحث

اقرأ أيضاً

72 - Lu Cao , Wenyao Liu , Geng Li 2021
We observe two types of superconducting states controlled by orientations of local wrinkles on the surface of LiFeAs. Using scanning tunneling microscopy/spectroscopy, we find type-I wrinkles enlarge the superconducting gaps and enhance the transitio n temperature, whereas type-II wrinkles significantly suppress the superconducting gaps. The vortices on wrinkles show a C2 symmetry, indicating the strain effects on the wrinkles. A discontinuous switch of superconductivity occurs at the border between two different wrinkles. Our results demonstrate that the local strain effect could affect superconducting order parameter of LiFeAs with a possible Lifshitz transition, by alternating crystal structure in different directions.
We present measurements of 1/f frequency noise in both linear and Josephson-junction-embedded superconducting aluminum resonators in the low power, low temperature regime - typical operating conditions for superconducting qubits. The addition of the Josephson junction does not result in additional frequency noise, thereby placing an upper limit for fractional critical current fluctuations of $10^{-8}$ (Hz$^{-1/2}$) at 1 Hz for sub-micron, shadow evaporated junctions. These values imply a minimum dephasing time for a superconducting qubit due to critical current noise of 40 -- 1400 $mu$s depending on qubit architecture. Occasionally, at temperatures above 50 mK, we observe the activation of individual fluctuators which increase the level of noise significantly and exhibit Lorentzian spectra.
We discuss a mechanism of microwave absorption in conventional superconductors which is similar to the Debye absorption mechanism in molecular gases. The contribution of this mechanism to the emph{ac} conductivity is proportional to the inelastic qua siparticle relaxation time $tau_mathrm{mathrm{in}}$ rather than the elastic one $tau_{mathrm{el}}$ and therefore it can be much larger than the conventional one. The Debye contribution to the linear conductivity arises only in the presence of a emph{dc} supercurrent in the system and its magnitude depends strongly on the orientation of the microwave field relative to the supercurrent. The Debye contribution to the nonlinear conductivity exists even in the absence of emph{dc} supercurrent. Since it is proportional to $tau_{mathrm{in}}$ the nonlinear threshold is anomalously low. Microwave absorption measurements may provide direct information about $tau_mathrm{in}$ in superconductors.
332 - E. M. Levenson-Falk , R. Vijay , 2011
We present the driven response at T=30mK of 6 GHz superconducting resonators constructed from capacitively-shunted three dimensional (3D) aluminum nanobridge superconducting quantum interference devices (nanoSQUIDs). We observe flux modulation of the resonant frequency in quantitative agreement with numerical calculation and characteristic of near-ideal short weak link junctions. Under strong microwave excitation, we observe stable bifurcation in devices with coupled quality factor (Q) ranging from ~30-3500. Near this bias point, parametric amplification with > 20dB gain, 40 MHz bandwidth, and near quantum-limited noise performance is observed. Our results indicate that 3D nanobridge junctions are attractive circuit elements to realize quantum bits.
Magnetic atoms on superconductors induce localized Yu-Shiba-Rusinov (YSR) bound states. The proposal that topological superconductivity and Majorana modes can be engineered in arrays of hybridizing YSR states has led to their intense investigation. H ere, we study Majorana modes emerging from bands of hybridized YSR states in artificially constructed Manganese (Mn) chains on superconducting Niobium (Nb). By controlling the chain geometry on the single atom level, we can measure the interaction-induced energy splitting of Majorana modes from both chains ends with increasing chain length. We find periodic lengths where their interaction is tuned to zero within the experimental energy resolution. Our work unravels ways to manipulate and minimize interactions between Majorana modes in finite-size systems as required for Majorana-based storage and processing of quantum information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا