ﻻ يوجد ملخص باللغة العربية
We investigate the length distribution of self-assembled, long and stiff polymers at thermal equilibrium. Our analysis is based on calculating the partition functions of stiff polymers of variable lengths in the elastic regime. Our conclusion is that the length distribution of this self-assembled system follows closely the exponential distribution, except at the short length limit. We then discuss the implications of our results on the experimentally observed length distributions in amyloid fibrils.
We consider the unwinding of two lattice polymer strands of length N that are initially wound around each other in a double-helical conformation and evolve through Rouse dynamics. The problem relates to quickly bringing a double-stranded polymer well
Self-assembling, semi-flexible polymers are ubiquitous in biology and technology. However, there remain conflicting accounts of the equilibrium kinetics for such an important system. Here, by focusing on a dynamical description of a minimal model in
We present a modelling framework, and basic model parameterization, for the study of DNA origami folding at the level of DNA domains. Our approach is explicitly kinetic and does not assume a specific folding pathway. The binding of each staple is ass
Colloidal crystals exhibit structural color without any color pigment due to the crystals periodic nanostructure, which can interfere with visible light. This crystal structure is iridescent as the resulting color changes with the viewing or illumina
Path integrals similar to those describing stiff polymers arise in the Helfrich model for membranes. We show how these types of path integrals can be evaluated and apply our results to study the thermodynamics of a minority stripe phase in a bulk mem