ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of photo-assisted collisions on superradiant light scattering with Bose condensates

115   0   0.0 ( 0 )
 نشر من قبل Lu Deng
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental evidence supporting the postulation that the secondary effects of light-assisted collisions are the main reason that the superradiant light scattering efficiency in condensates is asymmetric with respect to the sign of the pump-laser detuning. Contrary to the recent experimental study, however, we observe severe and comparable heating with all three pump-laser polarizations. We also perform two-color, double-pulse measurements to directly study the degradation of condensate coherence and the resulting impact on the superradiant scattering efficiency.



قيم البحث

اقرأ أيضاً

We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter wave coherence. A sub tle interplay of binary and collective effects leads to a profound asymmetry between the two sides of the atomic resonance and provides far bigger coherence loss rates for a condensate bathed in blue detuned light than previously estimated. We present a simplified quantitative model containing the essential physics to explain our experimental data and point at a new experimental route to study strongly coupled light matter systems.
A scheme is presented to perform an entangling gate between two atomic ensembles or Bose-Einstein condensates in a optical cavity with a common optical mode. The method involves using a generalized Stimulated Raman Adiabatic Passage (STIRAP) to adiab atically evolve the ground state. We show that dark states exist for any atom number within the cavities, and find that the operation produces an unusual type of evolution where the minimum of the number of atoms between two levels transitions to another state. This produces a unconventional type of entangling Hamiltonian which creates a phase depending on the minimum operation. We analyze its reliability under a variety of conditions ranging from the ideal decoherence-free case to that including photon loss and spontaneous emission. Ways of combating decoherence are analyzed and the amount of entanglement that is generated is calculated.
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing anisotropy of the trapping potential. Once the rotational symmetry is broken, we find that the vortex system undergoes a rich var iety of structural changes, including the formation of zig-zag and linear configurations. These spatial re-arrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the anisotropy parameter. The existence of such structural changes opens up possibilities for the coherent exploitation of effective many-body systems based on vortex patterns.
We propose a technique for engineering momentum-dependent dissipation in Bose-Einstein condensates with non-local interactions. The scheme relies on the use of momentum-dependent dark-states in close analogy to velocity-selective coherent population trapping. During the short-time dissipative dynamics, the system is driven into a particular finite-momentum phonon mode, which in real space corresponds to an ordered structure with non-local density-density correlations. Dissipation-induced ordering can be observed and studied in present-day experiments using cold atoms with dipole-dipole or off-resonant Rydberg interactions. Due to its dissipative nature, the ordering does not require artificial breaking of translational symmetry by an opticallattice or harmonic trap. This opens up a perspective of direct cooling of quantum gases into strongly-interacting phases.
181 - S.-W. Su , S.-C. Gou , Q. Sun 2016
We explore a new way of producing the Rashba spin-orbit coupling (SOC) for ultracold atoms by using a two-component (spinor) atomic Bose-Einstein condensate (BEC) confined in a bilayer geometry. The SOC of the Rashba type is created if the atoms pick up a {pi} phase after completing a cyclic transition between four combined spin-layer states composed of two spin and two layer states. The cyclic coupling of the spin-layer states is carried out by combining an intralayer Raman coupling and an interlayer laser assisted tunneling. We theoretically determine the ground-state phases of the spin-orbit-coupled BEC for various strengths of the atom-atom interaction and the laser-assisted coupling. It is shown that the bilayer scheme provides a diverse ground-state phase diagram. In an intermediate range of the atom-light coupling two interlacing lattices of half- skyrmions and half-antiskyrmions are spontaneously created. In the strong-coupling regime, where the SOC of the Rashba-type is formed, the ground state represents plane-wave or standing-wave phases depending on the interaction between the atoms. A variational analysis is shown to be in a good agreement with the numerical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا