ﻻ يوجد ملخص باللغة العربية
Dielectric and magnetic properties of Eu0.5Ba0.25Sr0.25TiO3 are investigated between 10 K and 300 K in the frequency range from 10 Hz to 100 THz. A peak in permittivity revealed near 130 K and observed ferroelectric hysteresis loops prove the ferroelectric order below thistemperature. The peak in permittivity is given mainly by softening of the lowest frequency polar phonon (soft mode revealed in THz and IR spectra) that demonstrates displacive character of the phase transition. Room-temperature X-ray diffraction analysis reveals cubic structure, but the IR reflectivity spectra give evidence of a lower crystal structure, presumably tetragonal I4/mcm with tilted oxygen octahedra as it has been observed in EuTiO3. The magnetic measurements show that the antiferromagnetic order occurs below 1.8 K. Eu0.5Ba0.25Sr0.25TiO3 has three times lower coercive field than Eu0.5Ba0.5TiO3, therefore we propose this system for measurements of electric dipole moment of electron.
A correlation between structure and vibrational properties related to a ferroelectric to paraelectric phase transition in perovskite Pb(1-x)(Na0.5Sm0.5)xTiO3 (PNST - x) polycrystalline powders is discussed. Substitution leads to reduction of tetragon
We report the evolution of structural, magnetic and dielectric properties due to partial substitution of Ba by Sr in the high temperature multiferroic YBaCuFeO5. This compound exhibits ferroelectric and antiferromagnetic transitions around 200 K and
Multiferroic (Bi1-xLaxFeO3)0.5(PbTiO3)0.5 ceramics was prepared from mechanical synthesized nanopowders. The XRD studies revealed the tetragonal structure and the tetragonality decreased with La content. Dielectric response of the compounds was found
The structural phase transition in hexagonal BaMnO$_3$ occurring at $T_c$=130 K was studied in ceramic samples using electron and X-ray diffraction, second harmonic generation as well as by dielectric and lattice dynamic spectroscopies. The low-tempe
YBaCuFeO5 is one of the interesting multiferroic compounds, which exhibits magnetic ordering and dielectric anomaly above 200 K. Partial substitution of Fe with other magnetic and non-magnetic ion affects the magnetic and the structural properties of