ترغب بنشر مسار تعليمي؟ اضغط هنا

Density-functional calculations of the electronic structure and lattice dynamics of superconducting LaO$_{0.5}$F$_{0.5}$BiS$_{2}$: Evidence for an electron-phonon interaction near the charge-density-wave instability

305   0   0.0 ( 0 )
 نشر من قبل Xiangang Wan
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the electronic structure, lattice dynamics and electron-phonon interaction of newly discovered superconductor LaO$_{0.5}$F$_{0.5}$BiS$_{2}$ using density functional based calculations. A strong Fermi surface nesting at $mathbf{k}$=($pi $,$pi $,0) suggests a proximity to charge density wave instability and leads to imaginary harmonic phonons at this $mathbf{k}$ point associated with in-plane displacements of S atoms. Total energy analysis resolves only a shallow double-well potential well preventing the appearance of static long-range order. Both harmonic and anharmonic contributions to electron-phonon coupling are evaluated and give a total coupling constant $lambda simeq 0.85$ prompting this material to be a conventional superconductor contrary to structurally similar FeAs materials.

قيم البحث

اقرأ أيضاً

We report density functional calculations of the electronic structure, Fermi surface, phonon spectrum and electron--phonon coupling for newly discovered superconductor LaO$_{0.5}$F$_{0.5}$BiSe$_{2}$. Significant similarity between LaO$_{0.5}$F$_{0.5} $BiS$_{2}$ and LaO$_{0.5}$F$_{0.5}$BiSe$_{2}$ is found, i.e. there is a strong Fermi surface nesting at ($pi $,$pi $,0), which results in unstable phonon branches. Combining the frozen phonon total energy calculations and an anharmonic oscillator model, we find that the quantum fluctuation prevents the appearance of static long--range order. The calculation shows that LaO$_{0.5}$F$_{0.5}$BiSe$_{2}$ is highly anisotropic, and same as LaO$_{0.5}$F$_{0.5}$BiS$_{2}$, this compound is also a conventional electron-phonon coupling induced superconductor.
110 - Z. R. Ye , H. F. Yang , D. W. Shen 2014
NdO$_{0.5}$F$_{0.5}$BiS$_{2}$ is a new layered superconductor. We have studied the low-lying electronic structure of a single crystalline NdO$_{0.5}$F$_{0.5}$BiS$_{2}$ superconductor, whose superconducting transition temperature is 4.87K, with angle- resolved photoemission spectroscopy. The Fermi surface consists of two small electron pockets around the X point and shows little warping along the $k_z$ direction. Our results demonstrate the multi-band and two-dimensional nature of the electronic structure. The good agreement between the photoemission data and the band calculations gives the renormalization factor of 1, indicating the rather weak electron correlations in this material. Moreover, we found that the actual electron doping level and Fermi surface size are much smaller than what are expected from the nominal composition, which could be largely explained by the bismuth dificiency. The small Fermi pocket size and the weak electron correlations found here put strong constraints on theory, and suggest that the BiS$_2$-based superconductors could be conventional BCS superconductors mediated by the electron-phonon coupling.
We present inelastic neutron scattering results of phonons in (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te powders, with $x=0$ and 0.3. The $x=0$ sample is a topological crystalline insulator, and the $x=0.3$ sample is a superconductor with a bulk supercon ducting transition temperature $T_c$ of 4.7 K. In both samples, we observe unexpected van Hove singularities in the phonon density of states at energies of 1--2.5 meV, suggestive of local modes. On cooling the superconducting sample through $T_c$, there is an enhancement of these features for energies below twice the superconducting-gap energy. We further note that the superconductivity in (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te occurs in samples with normal-state resistivities of order 10 m$Omega$~cm, indicative of bad-metal behavior. Calculations based on density functional theory suggest that the superconductivity is easily explainable in terms of electron-phonon coupling; however, they completely miss the low-frequency modes and do not explain the large resistivity. While the bulk superconducting state of (Pb$_{0.5}$Sn$_{0.5}$)$_{0.7}$In$_{0.3}$Te appears to be driven by phonons, a proper understanding will require ideas beyond simple BCS theory.
73 - I. Jeon , D. Yazici , B. D. White 2014
We present the effect of yttrium substitution on superconductivity in the La$_{1-textit{x}}$Y$_{textit{x}}$O$_{0.5}$F$_{0.5}$BiS$_{2}$ system. Polycrystalline samples with nominal Y concentrations up to 40% were synthesized and characterized via elec trical resistivity, magnetic susceptibility, and specific heat measurements. Y substitution reduces the lattice parameter textit{a} and unit cell volume textit{V}, and a correlation between the lattice parameter textit{c}, the La-O-La bond angle, and the superconducting critical temperature $T_c$ is observed. The chemical pressure induced by Y substitution for La produces neither the high-$T_c$ superconducting phase nor the structural phase transition seen in LaO$_{0.5}$F$_{0.5}$BiS$_{2}$ under externally applied pressure.
Superconductivity (SC) and charge-density wave (CDW) are two contrasting yet relevant collective electronic states which have received sustained interest for decades. Here we report that, in a layered europium bismuth sulfofluoride, EuBiS$_2$F, a CDW -like transition occurs at 280 K, below which SC emerges at 0.3 K, without any extrinsic doping. The Eu ions were found to exhibit an anomalously temperature-independent mixed valence of about +2.2, associated with the formation of CDW. The mixed valence of Eu gives rise to self electron doping into the conduction bands mainly consisting of the in-plane Bi-6$p$ states, which in turn brings about the CDW and SC. In particular, the electronic specific-heat coefficient is enhanced by ~ 50 times, owing to the significant hybridizations between Eu-4$f$ and Bi-6$p$ electrons, as verified by band-structure calculations. Thus, EuBiS$_2$F manifests itself as an unprecedented material that simultaneously accommodates SC, CDW and $f$-electron valence instability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا