ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel observations of extended atomic gas in the core of the Perseus cluster

121   0   0.0 ( 0 )
 نشر من قبل Rupal Mittal
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Herschel observations of the core of the Perseus cluster of galaxies. The brightest cluster galaxy, NGC 1275, is surrounded by a network of filaments previously imaged extensively in H{alpha} and CO. In this work, we report detections of FIR lines with Herschel. All but one of the lines are spatially extended, with the [CII] line emission extending up to 25 kpc from the core. There is spatial and kinematical correlation among [CII], H{alpha} and CO, which gives us confidence to model the different components of the gas with a common heating model. With the help of FIR continuum Herschel measurements, together with a suite of coeval radio, submm and infrared data, we performed a SED fitting of NGC 1275 using a model that contains contributions from dust emission as well as synchrotron AGN emission. The data indicate a low dust emissivity index, beta ~ 1, a total dust mass close to 10^7 solar mass, a cold dust component with temperature 38 pm 2 K and a warm dust component with temperature of 116 pm 9 K. The FIR-derived star formation rate (SFR) is 24 pm 1 solar mass per yr, in close agreement with the FUV-derived SFR. We investigated in detail the source of the Herschel FIR and H{alpha} emissions emerging from a core region 4 kpc in radius. Based on simulations conducted using the radiative transfer code, CLOUDY, a heating model comprising old and young stellar populations is sufficient to explain these observations. We have also detected [CII] in three well-studied regions of the filaments. We find a [OI]/[CII] ratio about 1 dex smaller than predicted by the otherwise functional Ferland (2009) model. The line ratio suggests that the lines are optically thick, as is typical of galactic PDRs, and implies that there is a large reservoir of cold atomic gas. [abridged]



قيم البحث

اقرأ أيضاً

Brightest cluster galaxies (BCGs) in the cores of galaxy clusters have distinctly different properties from other low redshift massive ellipticals. The majority of the BCGs in cool-core clusters show signs of active star formation. We present observa tions of NGC 4696, the BCG of the Centaurus galaxy cluster, at far-infrared (FIR) wavelengths with the Herschel space telescope. Using the PACS spectrometer, we detect the two strongest coolants of the interstellar medium, CII at 157.74 micron and OI at 63.18 micron, and in addition NII at 121.90 micron. The CII emission is extended over a region of 7 kpc with a similar spatial morphology and kinematics to the optical H-alpha emission. This has the profound implication that the optical hydrogen recombination line, H-alpha, the optical forbidden lines, NII 6583 Angstrom, the soft X-ray filaments and the far-infrared CII line all have the same energy source. We also detect dust emission using the PACS and SPIRE photometers at all six wavebands. We perform a detailed spectral energy distribution fitting using a two-component modified black-body function and find a cold 19 K dust component with mass 1.6x10^6 solar mass and a warm 46 K dust component with mass 4.0x10^3 solar mass. The total FIR luminosity between 8 micron and 1000 micron is 7.5x10^8 solar luminosity, which using Kennicutt relation yields a low star formation rate of 0.13 solar mass per yr. This value is consistent with values derived from other tracers, such as ultraviolet emission. Combining the spectroscopic and photometric results together with optical H-alpha, we model emitting clouds consisting of photodissociation regions (PDRs) adjacent to ionized regions. We show that in addition to old and young stellar populations, there is another source of energy, such as cosmic rays, shocks or reconnection diffusion, required to excite the H-alpha and CII filaments.
We present new Chandra images of the X-ray emission from the core of the Perseus cluster of galaxies. The total observation time is now 1.4 Ms. New depressions in X-ray surface brightness are discovered to the north of NGC1275, which we interpret as old rising bubbles. They imply that bubbles are long-lived and do not readily breakup when rising in the hot cluster atmosphere. The existence of a 300 kpc long NNW-SSW bubble axis means there cannot be significant transverse large scale flows exceeding 100 km/s. Interesting spatial correlations are seen along that axis in early deep radio maps. A semi-circular cold front about 100 kpc west of the nucleus is seen. It separates an inner disturbed region dominated by the activity of the active nucleus of NGC1275 from the outer region where a subcluster merger dominates.
We present continuum observations of the Perseus B1-E region from the Herschel Gould Belt Survey. These Herschel data reveal a loose grouping of substructures at 160 - 500 micron not seen in previous submillimetre observations. We measure temperature and column density from these data and select the nine densest and coolest substructures for follow-up spectral line observations with the Green Bank Telescope. We find that the B1-E clump has a mass of ~ 100 solar masses and appears to be gravitationally bound. Furthermore, of the nine substructures examined here, one substructure (B1-E2) appears to be itself bound. The substructures are typically less than a Jeans length from their nearest neighbour and thus, may interact on a timescale of ~ 1 Myr. We propose that B1-E may be forming a first generation of dense cores, which could provide important constraints on the initial conditions of prestellar core formation. Our results suggest that B1-E may be influenced by a strong, localized magnetic field, but further observations are still required.
Based mainly on X-ray observations, studies are made on interactions between the intra-cluster medium (ICM) in clusters of galaxies and their member galaxies. Through (magneto)hydrodynamic and gravitational channels, the moving galaxies are expected to drag the ICM around them, and transfer to the ICM some fraction of their dynamical energies on cosmological time scales. This hypothesis is in line with several observations, including the possible cosmological infall of galaxies towards the cluster center, found over redshifts of z~1 to z~0. Further assuming that the energy lost by the galaxies is first converted into ICM turbulence and then dissipated, this picture can explain the subsonic and uniform ICM turbulence, measured with Hitomi in the core region of the Perseus cluster. The scenario may also explain several other unanswered problems regarding clusters of galaxies, including what prevents the ICM from the expected radiative cooling, how the various mass components in nearby clusters have attained different radial distributions, and how a thermal stability is realized between hot and cool ICM components that co-exist around cD galaxies. This view is also considered to pertain to the general scenario of galaxy evolution, including their environmental effects.
Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا