ترغب بنشر مسار تعليمي؟ اضغط هنا

Twisted quantum Drinfeld Hecke algebras

95   0   0.0 ( 0 )
 نشر من قبل Deepak Naidu
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Deepak Naidu




اسأل ChatGPT حول البحث

We generalize quantum Drinfeld Hecke algebras by incorporating a 2-cocycle on the associated finite group. We identify these algebras as specializations of deformations of twisted skew group algebras, giving an explicit connection to Hochschild cohomology. We classify these algebras for diagonal actions, as well as for the symmetric groups with their natural representations. Our results show that the parameter spaces for the symmetric groups in the twisted setting is smaller than in the untwisted setting.

قيم البحث

اقرأ أيضاً

Quantum Drinfeld Hecke algebras are generalizations of Drinfeld Hecke algebras in which polynomial rings are replaced by quantum polynomial rings. We identify these algebras as deformations of skew group algebras, giving an explicit connection to Hoc hschild cohomology. We compute the relevant part of Hochschild cohomology for actions of many reflection groups and we exploit computations from our paper with Shroff for diagonal actions. By combining our work with recent results of Levandovskyy and Shepler, we produce examples of quantum Drinfeld Hecke algebras. These algebras generalize the braided Cherednik algebras of Bazlov and Berenstein.
396 - Apoorva Khare 2016
If A is a cocommutative algebra with coproduct, then so is the smash product algebra of a symmetric algebra Sym(V) with A, where V is an A-module. Such smash product algebras, with A a group ring or a Lie algebra, have families of deformations that h ave been studied widely in the literature; examples include symplectic reflection algebras and infinitesimal Hecke algebras. We introduce a family of deformations of these smash product algebras for general A, and characterize the PBW property. We then characterize the Jacobi identity for grouplike algebras (that include group rings and the nilCoxeter algebra), and precisely identify the PBW deformations in the example where A is the nilCoxeter algebra. We end with the more prominent case - where A is a Hopf algebra. We show the equivalence of sever
Associated to the classical Weyl groups, we introduce the notion of degenerate spin affine Hecke algebras and affine Hecke-Clifford algebras. For these algebras, we establish the PBW properties, formulate the intertwiners, and describe the centers. W e further develop connections of these algebras with the usual degenerate (i.e. graded) affine Hecke algebras of Lusztig by introducing a notion of degenerate covering affine Hecke algebras.
103 - Ta Khongsap , Weiqiang Wang 2009
We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W a nd two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras.
Let $U_q(mathfrak{g})$ be a twisted affine quantum group of type $A_{N}^{(2)}$ or $D_{N}^{(2)}$ and let $mathfrak{g}_{0}$ be the finite-dimensional simple Lie algebra of type $A_{N}$ or $D_{N}$. For a Dynkin quiver of type $mathfrak{g}_{0}$, we defin e a full subcategory ${mathcal C}_{Q}^{(2)}$ of the category of finite-dimensional integrable $U_q(mathfrak{g})$-modules, a twisted version of the category ${mathcal C}_{Q}$ introduced by Hernandez and Leclerc. Applying the general scheme of affine Schur-Weyl duality, we construct an exact faithful KLR-type duality functor ${mathcal F}_{Q}^{(2)}: Rep(R) rightarrow {mathcal C}_{Q}^{(2)}$, where $Rep(R)$ is the category of finite-dimensional modules over the quiver Hecke algebra $R$ of type $mathfrak{g}_{0}$ with nilpotent actions of the generators $x_k$. We show that ${mathcal F}_{Q}^{(2)}$ sends any simple object to a simple object and induces a ring isomorphism $K(Rep(R)) simeq K({mathcal C}_{Q}^{(2)})$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا