ترغب بنشر مسار تعليمي؟ اضغط هنا

Above threshold ionization by few-cycle spatially inhomogeneous fields

101   0   0.0 ( 0 )
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present theoretical studies of above threshold ionization (ATI) produced by spatially inhomogeneous fields. This kind of field appears as a result of the illumination of plasmonic nanostructures and metal nanoparticles with a short laser pulse. We use the time-dependent Schrodinger equation (TDSE) in reduced dimensions to understand and characterize the ATI features in these fields. It is demonstrated that the inhomogeneity of the laser electric field plays an important role in the ATI process and it produces appreciable modifications to the energy-resolved photoelectron spectra. In fact, our numerical simulations reveal that high energy electrons can be generated. Specifically, using a linear approximation for the spatial dependence of the enhanced plasmonic field and with a near infrared laser with intensities in the mid- 10^{14} W/cm^{2} range, we show it is possible to drive electrons with energies in the near-keV regime. Furthermore, we study how the carrier envelope phase influences the emission of ATI photoelectrons for few-cycle pulses. Our quantum mechanical calculations are supported by their classical counterparts.

قيم البحث

اقرأ أيضاً

109 - M. Kubel , M. Arbeiter , C. Burger 2018
We investigate the carrier-envelope phase and intensity dependence of the longitudinal momentum distribution of photoelectrons resulting from above-threshold ionization of argon by few-cycle laser pulses. The intensity of the pulses with a center wav elength of 750,nm is varied in a range between $0.7 times 10^{14}$ and $unit[5.5 times 10^{14}]{W/cm^2}$. Our measurements reveal a prominent maximum in the carrier-envelope phase-dependent asymmetry at photoelectron energies of 2,$U_mathrm{P}$ ($U_mathrm{P}$ being the ponderomotive potential), that is persistent over the entire intensity range. Further local maxima are observed at 0.3 and 0.8,$U_mathrm{P}$. The experimental results are in good agreement with theoretical results obtained by solving the three-dimensional time-dependent Schr{o}dinger equation (3D TDSE). We show that for few-cycle pulses, the carrier-envelope phase-dependent asymmetry amplitude provides a reliable measure for the peak intensity on target. Moreover, the measured asymmetry amplitude exhibits an intensity-dependent interference structure at low photoelectron energy, which could be used to benchmark model potentials for complex atoms.
We experimentally demonstrate spatiotemporal steering of photoelectron emission in multiphoton above-threshold single ionization of atoms exposed to a phase-controlled orthogonally polarized two-color (OTC) laser pulse. Spatial and energy resolved ph otoelectron angular distributions are measured as a function of the laser phase, allowing us to look into the fine structures and emission dynamics. The slow and fast photoelectrons, distinguished by the energy larger or smaller than 2Up with Up being the ponderomotive energy of a free electron in the laser field, have distinct spatiotemporal dependences of the laser waveform. The phase-of-phase of the slow electron oscillates as functions of both the energy and emission direction, however, the fast electron present rather flat phase structure which merely depends on its emission direction. Three-dimensional generalized quantum trajectory Monte Carlo simulations are performed to explore the sub-cycle dynamics of the electron emission in the phase-controlled OTC pulse.
Isolated attosecond pulses (IAPs) produced through laser-driven high-harmonic generation (HHG) hold promise for unprecedented insight into biological processes via attosecond x-ray diffraction with tabletop sources. However, efficient scaling of HHG towards x-ray energies has been hampered by ionization-induced plasma generation impeding the coherent buildup of high-harmonic radiation. Recently, it has been shown that these limitations can be overcome in the so-called overdriven regime where ionization loss and plasma dispersion strongly modify the driving laser pulse over small distances, albeit without demonstrating IAPs. Here, we report on experiments comparing the generation of IAPs in argon and neon at 80 eV via attosecond streaking measurements. Contrasting our experimental results with numerical simulations, we conclude that IAPs in argon are generated through ionization-induced transient phase-matching gating effective over distances on the order of 100 $mu$m. We show that the decay of the intensity and blue-shift due to plasma defocussing are crucial for allowing phase-matching close to the XUV cutoff at high plasma densities. We perform simulations for different gases and wavelengths and show that the mechanism is important for the phase-matching of long-wavelength, tightly-focused laser beams in high-pressure gas targets, which are currently being employed for scaling isolated attosecond pulse generation to x-ray photon energies.
We analyze the role of the difference between the central frequencies of the spectral distributions of the vector potential and the electric field of a short laser pulse. The frequency shift arises when the electric field is determined as the derivat ive of the vector potential to ensure that both quantities vanish at the beginning and end of the pulse. We derive an analytical estimate of the frequency shift and show how it affects various light induced processes, such as excitation, ionization and high harmonic generation. Since observables depend on the frequency spectrum of the electric field, the shift should be taken into account when setting the central frequency of the vector potential to avoid potential misinterpretation of numerical results for processes induced by few-cycle pulses.
Research on spatially-structured light has seen an explosion in activity over the past decades, powered by technological advances for generating such light, and driven by questions of fundamental science as well as engineering applications. In this r eview we highlight work on the interaction of vector light fields with atoms, and matter in general. This vibrant research area explores the full potential of light, with clear benefits for classical as well as quantum applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا