ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating entanglement with low Q-factor microcavities

209   0   0.0 ( 0 )
 نشر من قبل Andrew Young
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method of generating entanglement using single photons and electron spins in the regime of resonance scattering. The technique involves matching the spontaneous emission rate of the spin dipole transition in bulk dielectric to the modified rate of spontaneous emission of the dipole coupled to the fundamental mode of an optical microcavity. We call this regime resonance scattering where interference between the input photons and those scattered by the resonantly coupled dipole transition result in a reflectivity of zero. The contrast between this and the unit reflectivity when the cavity is empty allow us to perform a non demolition measurement of the spin and to non deterministically generate entanglement between photons and spins. The chief advantage of working in the regime of resonance scattering is that the required cavity quality factors are orders of magnitude lower than is required for strong coupling, or Purcell enhancement. This makes engineering a suitable cavity much easier particularly in materials such as diamond where etching high quality factor cavities remains a significant challenge.



قيم البحث

اقرأ أيضاً

We explore the dynamics of the entanglement in a semiconductor cavity QED containing a quantum well. We show the presence of sudden birth and sudden death for some particular sets of the system parameters.
We propose an experiment to generate deterministic entanglement between separate nitrogen vacancy (NV) centers mediated by the mode of a photonic crystal cavity. Using numerical simulations the applicability and robustness of the entanglement operati on to parameter regimes achievable with present technology is investigated. We find that even with moderate cavity Q-factors of $10^{4}$ a concurrence of $c>0.6$ can be achieved within a time of $t_{max}approx150$~ns, while Q-factors of $10^{5}$ promise $c>0.8$. Most importantly, the investigated scheme is relative insensitive to spectral diffusion and differences between the optical transitions frequencies of the used NV centers.
We design extremely flexible ultrahigh-Q diamond-based double-heterostructure photonic crystal slab cavities by modifying the refractive index of the diamond. The refractive index changes needed for ultrahigh-Q cavities with $Q ~ 10^7$, are well with in what can be achieved ($Delta n sim 0.02$). The cavity modes have relatively small volumes $V<2 (lambda /n)^3$, making them ideal for cavity quantum electro-dynamic applications. Importantly for realistic fabrication, our design is flexible because the range of parameters, cavity length and the index changes, that enables an ultrahigh-Q is quite broad. Furthermore as the index modification is post-processed, an efficient technique to generate cavities around defect centres is achievable, improving prospects for defect-tolerant quantum architectures.
We generate and study the entanglement properties of novel states composed of three polarisation-encoded photonic qubits. By varying a single experimental parameter we can coherently move from a fully separable state to a maximally robust W state, wh ile at all times preserving an optimally robust, symmetric entanglement configuration. We achieve a high fidelity with these configurations experimentally, including the highest reported W state fidelity.
421 - Zhe Guan , Huan He , Yong-Jian Han 2013
Fernando Galve emph{et al.} $[Phys. Rev. Lett. textbf{110}, 010501 (2013)]$ introduced discording power for a two-qubit unitary gate to evaluate its capability to produce quantum discord, and found that a $pi/8$ gate has maximal discording power. Thi s work analyzes the entangling power of a two-qubit unitary gate, which reflects its ability to generate quantum entanglement in another way. Based on the renowned Cartan decomposition of two-qubit unitary gates, we show that the magic power of the $pi/8$ gate produces maximal entanglement for a general value of purities for two-qubit states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا