ترغب بنشر مسار تعليمي؟ اضغط هنا

Importance of exchange-anisotropy and superexchange for the spin-state transitions in LnCoO3 (Ln=La,Y,RE) cobaltates

76   0   0.0 ( 0 )
 نشر من قبل Eva Pavarini
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-state transitions are the hallmark of rare-earth cobaltates. In order to understand them, it is essential to identify all relevant parameters which shift the energy balance between spin states, and determine their trends. We find that Delta, the eg-t2g crystal-field splitting, increases by ~250 meV when increasing pressure to 8 GPa and by about 150 meV when cooling from 1000K to 5K. It changes, however, by less than 100 meV when La is substituted with another rare earth. Also the Hunds rule coupling J_avg is about the same in systems with very different spin-state transition temperature, like LaCoO3 and EuCoO3. Consequently, in addition to Delta and J_avg, the Coulomb-exchange anisotropy Delta J_ avg and the super-exchange energy-gain Delta E_SE play a crucial role, and are comparable with spin-state dependent relaxation effects due to covalency. We show that in the LnCoO3 series, with Ln=Y or a rare earth (RE), super-exchange progressively stabilizes a low-spin ground state as the Ln^{3+} ionic radius decreases. We give a simple model to describe spin-state transitions and show that, at low temperature, the formation of isolated high-spin/low-spin pairs is favored, while in the high-temperature phase, the most likely homogeneous state is high-spin, rather than intermediate spin. An orbital-selective Mott state could be a fingerprint of such a state.

قيم البحث

اقرأ أيضاً

We report a combined experimental and theoretical study of the unusual ferromagnetism in the one-dimensional copper-iridium oxide Sr$_3$CuIrO$_6$. Utilizing Ir $L_3$ edge resonant inelastic x-ray scattering, we reveal a large gap magnetic excitation spectrum. We find that it is caused by an unusual exchange anisotropy generating mechanism, namely, strong ferromagnetic anisotropy arising from antiferromagnetic superexchange, driven by the alternating strong and weak spin-orbit coupling on the $5d$ Ir and 3d Cu magnetic ions, respectively. From symmetry consideration, this novel mechanism is generally present in systems with edge-sharing Cu$^{2+}$O$_4$ plaquettes and Ir$^{4+}$O$_6$ octahedra. Our results point to unusual magnetic behavior to be expected in mixed 3d-5d transition-metal compounds via exchange pathways that are absent in pure 3d or 5d compounds.
We present a phenomenological theory for the ferromagnetic transition temperature, the magnetic susceptibility at high temperatures, and the structural distortion in the La$_{1-y}$(Ca$_{1-x}$Sr$_{x}$)$_{y}$MnO$_{3}$ system. We construct a Ginzburg-La ndau free energy that describes the magnetic and the structural transitions, and a competition between them. The parameters of the magnetic part of the free energy are derived from a mean-field solution of the magnetic interaction for arbitrary angular momentum. The theory provides a qualitative description of the observed magnetic and structural phase transitions as functions of Sr-doping level ($x$) for $y=0.25$.
Neutron powder diffraction (NPD) study of textit{Ln}MnSbO (textit{Ln }$=$ La or Ce) reveals differences between the magnetic ground state of the two compounds due to the strong Ce-Mn coupling compared to La-Mn. The two compounds adopt the textit{P4/n mm} space group down to 2 K and whereas magnetization measurements do not show obvious anomaly at high temperatures, NPD reveals a C-type antiferromagnetic (AFM) order below $T_{mathrm{N}} = 255 $ K for LaMnSbO and 240 K for CeMnSbO. While the magnetic structure of LaMnSbO is preserved to base temperature, a sharp transition at $T_{mathrm{SR}} = 4.5 $K is observed in CeMnSbO due to a spin-reorientation (SR) transition of the Mn$^{mathrm{2+}}$ magnetic moments from pointing along the $c$-axis to the textit{ab}-plane. The SR transition in CeMnSbO is accompanied by a simultaneous long-range AFM ordering of the Ce moments which indicates that the Mn SR transition is driven by the Ce-Mn coupling. The ordered moments are found to be somewhat smaller than those expected for Mn$^{mathrm{2+}}$ ($S = 5/2$) in insulators, but large enough to suggest that these compounds belong to the class of local-moment antiferromagnets. The lower $T_{mathrm{Nthinspace }}$ found in these two compounds compared to the As-based counterparts ($T_{mathrm{N}} = 317$ for LaMnAsO, $T_{mathrm{N}} = 347$ K for CeMnAsO) indicates that the Mn-$Pn$ ($Pn=$ As or Sb) hybridization that mediates the superexchange Mn-$Pn$-Mn coupling is weaker for the Sb-based compounds.
The diamagnetic-paramagnetic and insulator-metal transitions in LnCoO3 perovskites (Ln = La, Y, rare earths) are reinterpreted and modeled as a two-level excitation process. In distinction to previous models, the present approach can be characterized as a LS-HS-IS (low-high-intermediate spin) scenario. The first level is the local excitation of HS Co3+ species in the LS ground state. The second excitation is based on the interatomic electron transfer between the LS/HS pairs, leading finally to a stabilization of the metallic phase based on IS Co3+. The model parameters have been quantified for Ln = La, Pr and Nd samples using the powder neutron diffraction on the thermal expansion of Co-O bonds, that is associated with the two successive spin transitions. The same model is applied to interpret the magnetic susceptibility of LaCoO3 and YCoO3.
167 - M. Pregelj , O. Zaharko , M. Herak 2016
We investigate the spin-stripe mechanism responsible for the peculiar nanometer modulation of the incommensurate magnetic order that emerges between the vector-chiral and the spin-density-wave phase in the frustrated zigzag spin-1/2 chain compound $b eta$-TeVO$_4$. A combination of magnetic-torque, neutron-diffraction and spherical-neutron-polarimetry measurements is employed to determine the complex magnetic structures of all three ordered phases. Based on these results, we develop a simple phenomenological model, which exposes the exchange anisotropy as the key ingredient for the spin-stripe formation in frustrated spin systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا