ترغب بنشر مسار تعليمي؟ اضغط هنا

An experimental testbed for NEAT to demonstrate micro-pixel accuracy

424   0   0.0 ( 0 )
 نشر من قبل Antoine Crouzier
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. In NEAT, one fundamental aspect is the capability to measure stellar centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 4e-5 pixel at Nyquist sampling. Simulations showed that a precision of 2 micro-pixels can be reached, if intra and inter pixel quantum efficiency variations are calibrated and corrected for by a metrology system. The European part of the NEAT consortium is designing and building a testbed in vacuum in order to achieve 5e-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. In this paper we give the basic relations and trade-offs that come into play for the design of a centroid testbed and its metrology system. We detail the different conditions necessary to reach the targeted precision, present the characteristics of our current design and describe the present status of the demonstration.



قيم البحث

اقرأ أيضاً

279 - A. Crouzier , F. Malbet , O. Preis 2013
NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. NEAT requires the capability to measure stellar centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 2e-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The European part of the NEAT consortium is building a testbed in vacuum in order to achieve 5e-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. In this paper we present the metrology and the pseudo stellar sources sub-systems, we present a performance model and an error budget of the experiment and we report the present status of the demonstration. Finally we also present our first results: the experiment had its first light in July 2013 and a first set of data was taken in air. The analysis of this first set of data showed that we can already measure the pixel positions with an accuracy of about 1e-4 pixel.
The NEAT (Nearby Earth Astrometric Telescope) mission is a proposition submitted to ESA for its 2010 call for M-size mission. The main scientific goal is to detect and characterize planetary systems in an exhaustive way down to 1 Earth mass in the ha bitable zone and further away, around nearby stars for F, G, and K spectral types. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to that mass limit. Extremely- high-precision astrometry, in space, can detect the dynamical effect due to even low mass orbiting planets on their central star, reaching those scientific goals. NEAT will continue the work performed by Hipparcos (1mas precision) and Gaia (7{mu}as aimed) by reaching a precision that is improved by two orders of magnitude (0.05{mu}as, 1{sigma} accuracy). The two modules of the payload, the telescope and the focal plane, must be placed 40m away leading to a formation flying option studied as the reference mission. NEAT will operate at L2 for 5 years, the telescope satellite moving around the focal plane one to point different targets and allowing whole sky coverage in less than 20 days. The payload is made of 3 subsystems: primary mirror and its dynamic support, the focal plane with the detectors, and the metrology. The principle is to measure the angles between the target star, usually bright (R leq 6), and fainter reference stars (R leq 11) using a metrology system that projects dynamical Youngs fringes onto the focal plane. The proposed architecture relies on two satellites of about 700 kg, offering a capability of more than 20,000 reconfigurations. The two satellites are launched in a stacked configuration using a Soyuz ST launch, and are deployed after launch to individually perform cruise to their operational Lissajous orbit.
This paper presents the setup for empirical validations of the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS) tolerancing model for segmented coronagraphy. We show the hardware configuration of the High-contrast image r for Complex Aperture Telescopes (HiCAT) testbed on which these experiments will be conducted at an intermediate contrast regime between $10^{-6}$ and $10^{-8}$. We describe the optical performance of the testbed with a classical Lyot coronagraph and describe the recent hardware upgrade to a segmented mode, using an IrisAO segmented deformable mirror. Implementing experiments on HiCAT is made easy through its top-level control infrastructure that uses the same code base to run on the real testbed, or to invoke the optical simulator. The experiments presented in this paper are run on the HiCAT testbed emulator, which makes them ready to be performed on actual hardware. We show results of three experiments with results from the emulator, with the goal to demonstrate PASTIS on hardware next. We measure the testbed PASTIS matrix, and validate the PASTIS analytical propagation model by comparing its contrast predictions to simulator results. We perform the tolerancing analysis on the optical eigenmodes (PASTIS modes) and on independent segments, then validate these results in respective experiments. This work prepares and enables the experimental validation of the analytical segment-based tolerancing model for segmented aperture coronagraphy with the specific application to the HiCAT testbed.
Lunar laser ranging provides a number of leading experimental tests of gravitation -- important in our quest to unify General Relativity and the Standard Model of physics. The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has for ye ars achieved median range precision at the ~2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in-situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (< 10 ps) pulses that are locked to a cesium clock. In essence, the ACS delivers photons to the APOLLO detector at exquisitely well-defined time intervals as a truth input against which APOLLOs timing performance may be judged and corrected. Preliminary analysis indicates no inaccuracies in APOLLO data beyond the ~3 mm level, suggesting that historical APOLLO data are of high quality and motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.
120 - M. Delpech 2013
PRISMA is a demonstration mission for formation-flying and on-orbit-servicing critical technologies that involves two spacecraft launched in low Earth orbit in June 2010 and still in operation. Funded by the Swedish National Space Board, PRISMA missi on has been developed by OHB Sweden with important contributions from the German Aerospace Centre (DLR/GSOC), the French Space Agency (CNES), and the Technical University of Denmark (DTU). The paper focuses on the last CNES experiment achieved in September 2012 that was devoted to the preparation of future astrometry missions illustrated by the NEAT and microNEAT mission concepts. The experiment consisted in performing the type of formation maneuvers required to point the two-satellite axis to a celestial target and maintain it fixed during the observation period. Achieving inertial pointing for a LEO formation represented a new challenge given the numerous constraints from propellant usage to star tracker blinding. The paper presents the experiment objectives in relation with the NEAT/microNEAT mission concept, describes its main design features along with the guidance and control algorithms evolutions and discusses the results in terms of performances achieved during the two rehearsals
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا