ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Classification and Redshift Measurement for the SDSS-III Baryon Oscillation Spectroscopic Survey

204   0   0.0 ( 0 )
 نشر من قبل Adam S. Bolton
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) We describe the automated spectral classification, redshift determination, and parameter measurement pipeline in use for the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III) as of Data Release 9, encompassing 831,000 moderate-resolution optical spectra. We give a review of the algorithms employed, and describe the changes to the pipeline that have been implemented for BOSS relative to previous SDSS-I/

قيم البحث

اقرأ أيضاً

The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
We report on the small scale (0.5<r<40h^-1 Mpc) clustering of 78895 massive (M*~10^11.3M_sun) galaxies at 0.2<z<0.4 from the first two years of data from the Baryon Oscillation Spectroscopic Survey (BOSS), to be released as part of SDSS Data Release 9 (DR9). We describe the sample selection, basic properties of the galaxies, and caveats for working with the data. We calculate the real- and redshift-space two-point correlation functions of these galaxies, fit these measurements using Halo Occupation Distribution (HOD) modeling within dark matter cosmological simulations, and estimate the errors using mock catalogs. These galaxies lie in massive halos, with a mean halo mass of 5.2x10^13 h^-1 M_sun, a large scale bias of ~2.0, and a satellite fraction of 12+/-2%. Thus, these galaxies occupy halos with average masses in between those of the higher redshift BOSS CMASS sample and the original SDSS I/II LRG sample.
The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg^2, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations in the distribu tion of Ly-alpha absorption from the spectra of a sample of ~150,000 z>2.2 quasars. Along with measuring the angular diameter distance at zapprox2.5, BOSS will provide the first direct measurement of the expansion rate of the Universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars over 2.2 < z < 3.5, where their colors overlap those of stars. During the first year of the BOSS survey, quasar target selection methods were developed and tested to meet the requirement of delivering at least 15 quasars deg^-2 in this redshift range, out of 40 targets deg^-2. To achieve these surface densities, the magnitude limit of the quasar targets was set at g <= 22.0 or r<=21.85. While detection of the BAO signature in the Ly-alpha absorption in quasar spectra does not require a uniform target selection, many other astrophysical studies do. We therefore defined a uniformly-selected subsample of 20 targets deg^-2, for which the selection efficiency is just over 50%. This CORE subsample will be fixed for Years Two through Five of the survey. In this paper we describe the evolution and implementation of the BOSS quasar target selection algorithms during the first two years of BOSS operations. We analyze the spectra obtained during the first year. 11,263 new z>2.2 quasars were spectroscopically confirmed by BOSS. Our current algorithms select an average of 15 z > 2.2 quasars deg^-2 from 40 targets deg^-2 using single-epoch SDSS imaging. Multi-epoch optical data and data at other wavelengths can further improve the efficiency and completeness of BOSS quasar target selection. [Abridged]
We measure the luminosity and color dependence and the redshift evolution of galaxy clustering in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Ninth Data Release. We focus on the projected two-point correlation function (2 PCF) of subsets of its CMASS sample, which includes about 260,000 galaxies over ~3,300 sq. deg in the redshift range 0.43<z<0.7. To minimize the selection effect on galaxy clustering, we construct well-defined luminosity and color subsamples by carefully accounting for the CMASS galaxy selection cuts. The 2PCF of the whole CMASS sample, if approximated by a power-law, has a correlation length of r_0=7.93pm0.06Mpc/h and an index of gamma=1.85pm0.01. Clear dependences on galaxy luminosity and color are found for the projected 2PCF in all redshift bins, with more luminous and redder galaxies generally exhibiting stronger clustering and steeper 2PCF. The color dependence is also clearly seen for galaxies within the red sequence, consistent with the behavior of SDSS-II main sample galaxies at lower redshifts. At a given luminosity (k+e corrected), no significant evolution of the projected 2PCFs with redshift is detected for red sequence galaxies. We also construct galaxy samples of fixed number density at different redshifts, using redshift-dependent magnitude thresholds. The clustering of these galaxies in the CMASS redshift range is found to be consistent with that predicted by passive evolution. Our measurements of the luminosity and color dependence and redshift evolution of galaxy clustering will allow for detailed modeling of the relation between galaxies and dark matter halos and new constraints on galaxy formation and evolution.
We describe mock data-sets generated to simulate the high-redshift quasar sample in Data Release 11 (DR11) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The mock spectra contain Ly{alpha} forest correlations useful for studying the 3D correlation function including Baryon Acoustic Oscillations (BAO). They also include astrophysical effects such as quasar continuum diversity and high-density absorbers, instrumental effects such as noise and spectral resolution, as well as imperfections introduced by the SDSS pipeline treatment of the raw data. The Ly{alpha} forest BAO analysis of the BOSS collaboration, described in Delubac et al. 2014, has used these mock data-sets to develop and cross-check analysis procedures prior to performing the BAO analysis on real data, and for continued systematic cross checks. Tests presented here show that the simulations reproduce sufficiently well important characteristics of real spectra. These mock data-sets will be made available together with the data at the time of the Data Release 11.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا