ترغب بنشر مسار تعليمي؟ اضغط هنا

On p-adic invariant cycles theorem

159   0   0.0 ( 0 )
 نشر من قبل Bruno Chiarellotto
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a proper semistable curve $X$ over a DVR of mixed characteristics we reprove the invariant cycles theorem with trivial coefficients (see Chiarellotto, 1999) i.e. that the group of elements annihilated by the monodromy operator on the first de Rham cohomology group of the generic fiber of $X$ coincides with the first rigid cohomology group of its special fiber, without the hypothesis that the residue field of $cal V$ is finite. This is done using the explicit description of the monodromy operator on the de Rham cohomology of the generic fiber of $X$ with coefficients convergent $F$-isocrystals given in Coleman and Iovita (2010). We apply these ideas to the case where the coefficients are unipotent convergent $F$-isocrystals defined on the special fiber (without log-structure): we show that the invariant cycles theorem does not hold in general in this setting. Moreover we give a sufficient condition for the non exactness.



قيم البحث

اقرأ أيضاً

We prove a $p$-adic version of the Integral Geometry Formula for averaging the intersection of two $p$-adic projective algebraic sets. We apply this result to give bounds on the number of points in the modulo $p^m$ reduction of a projective set (repr oving a result by Oesterle) and to the study of random $p$-adic polynomial systems of equations.
We use Scholzes framework of diamonds to gain new insights in correspondences between $p$-adic vector bundles and local systems. Such correspondences arise in the context of $p$-adic Simpson theory in the case of vanishing Higgs fields. In the presen t paper we provide a detailed analysis of local systems on diamonds for the etale, pro-etale, and the $v$-topology, and study the structure sheaves for all three topologies in question. Applied to proper adic spaces of finite type over $mathbb{C}_p$ this enables us to prove a category equivalence between $mathbb{C}_p$-local systems with integral models, and modules under the $v$-structure sheaf which modulo each $p^n$ can be trivialized on a proper cover. The flexibility of the $v$-topology together with a descent result on integral models of local systems allows us to prove that the trivializability condition in the module category may be checked on any normal proper cover. This result leads to an extension of the parallel transport theory by Deninger and the second author to vector bundles with numerically flat reduction on a proper normal cover.
We develop a theory of etale parallel transport for vector bundles with numerically flat reduction on a $p$-adic variety. This construction is compatible with natural operations on vector bundles, Galois equivariant and functorial with respect to mor phisms of varieties. In particular, it provides a continuous $p$-adic representation of the etale fundamental group for every vector bundle with numerically flat reduction. The results in the present paper generalize previous work by the authors on curves. They can be seen as a $p$-adic analog of higher-dimensional generalizations of the classical Narasimhan-Seshadri correspondence on complex varieties. Moreover, they provide new insights into Faltings $p$-adic Simpson correspondence between small Higgs bundles and small generalized representations by establishing a class of vector bundles with vanishing Higgs field giving rise to actual (not only generalized) representations.
170 - Herve Jacquet , Baiying Liu 2016
In this paper, we completely prove a standard conjecture on the local converse theorem for generic representations of GLn(F), where F is a non-archimedean local field.
203 - Serin Hong 2020
Given three arbitrary vector bundles on the Fargues-Fontaine curve where one of them is assumed to be semistable, we give an explicit and complete criterion in terms of Harder-Narasimha polygons on whether there exists a short exact sequence among th em. Our argument is based on a dimension analysis of certain moduli spaces of bundle maps and bundle extensions using Scholzes theory of diamonds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا