ﻻ يوجد ملخص باللغة العربية
We analyze the convergence properties of the Wang-Landau algorithm. This sampling method belongs to the general class of adaptive importance sampling strategies which use the free energy along a chosen reaction coordinate as a bias. Such algorithms are very helpful to enhance the sampling properties of Markov Chain Monte Carlo algorithms, when the dynamics is metastable. We prove the convergence of the Wang-Landau algorithm and an associated central limit theorem.
We propose a strategy to achieve the fastest convergence in the Wang-Landau algorithm with varying modification factors. With this strategy, the convergence of a simulation is at least as good as the conventional Monte Carlo algorithm, i.e. the stati
This review paper provides an introduction of Markov chains and their convergence rates which is an important and interesting mathematical topic which also has important applications for very widely used Markov chain Monte Carlo (MCMC) algorithm. We
We establish a quantitative version of the Tracy--Widom law for the largest eigenvalue of high dimensional sample covariance matrices. To be precise, we show that the fluctuations of the largest eigenvalue of a sample covariance matrix $X^*X$ converg
We study the rate of convergence of the Mallows distance between the empirical distribution of a sample and the underlying population. The surprising feature of our results is that the convergence rate is slower in the discrete case than in the absol
We prove the asymptotic independence of the empirical process $alpha_n = sqrt{n}( F_n - F)$ and the rescaled empirical distribution function $beta_n = n (F_n(tau+frac{cdot}{n})-F_n(tau))$, where $F$ is an arbitrary cdf, differentiable at some point $