ﻻ يوجد ملخص باللغة العربية
Differences in the confinement of electrons and holes in quantum dots are shown to profoundly impact the magnitude of scattering with acoustic phonons in materials where crystal deformation shifts the conduction and valence band in the same direction. Using an extensive model that includes the non-Markovian nature of the phonon reservoir, we show how the effect may be addressed by photoluminescence excitation spectroscopy of a single quantum dot. We also investigate the implications for cavity QED, i.e. a coupled quantum dot-cavity system, and demonstrate that the phonon scattering may be strongly quenched. The quenching is explained by a balancing between the deformation potential interaction strengths and the carrier confinement and depends on the quantum dot shape. Numerical examples suggest a route towards engineering the phonon scattering.
We use temporally resolved intensity cross-correlation measurements to identify the biexciton-exciton radiative cascades in a negatively charged QD. The polarization sensitive correlation measurements show unambiguously that the excited two electron
We demonstrate the real-time detection of single photogenerated electrons in two different lateral double quantum dots made in AlGaAs/GaAs/AlGaAs quantum wells having a thin or a thick AlGaAs barrier layer. The observed incident laser power and photo
Strong electrically tunable exciton g-factors are observed in individual (Ga)InAs self-assembled quantum dots and the microscopic origin of the effect is explained. Realistic eight band k.p simulations quantitatively account for our observations, sim
We study optically driven Rabi rotations of a quantum dot exciton transition between 5 and 50 K, and for pulse-areas of up to $14pi$. In a high driving field regime, the decay of the Rabi rotations is nonmonotonic, and the period decreases with pulse
Spin-polarized transport through a quantum dot strongly coupled to ferromagnetic electrodes with non-collinear magnetic moments is analyzed theoretically in terms of the non-equilibrium Green function formalism. Electrons in the dot are assumed to be