ترغب بنشر مسار تعليمي؟ اضغط هنا

Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons

204   0   0.0 ( 0 )
 نشر من قبل Vasily Temnov V.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fundamental interactions induced by lattice vibrations on ultrafast time scales become increasingly important for modern nanoscience and technology. Experimental access to the physical properties of acoustic phonons in the THz frequency range and over the entire Brillouin zone is crucial for understanding electric and thermal transport in solids and their compounds. Here, we report on the generation and nonlinear propagation of giant (1 percent) acoustic strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast surface plasmon interferometry. This new technique allows for unambiguous characterization of arbitrary ultrafast acoustic transients. The giant acoustic pulses experience substantial nonlinear reshaping already after a propagation distance of 100 nm in a crystalline gold layer. Excellent agreement with the Korteveg-de Vries model points to future quantitative nonlinear femtosecond THz-ultrasonics at the nano-scale in metals at room temperature.



قيم البحث

اقرأ أيضاً

To efficiently integrate cutting-edge terahertz technology into compact devices, the highly confined terahertz plasmons are attracting intensive attentions. Compared to plasmons at visible frequencies in metals, terahertz plasmons, typically in light ly doped semiconductors or graphene, are sensitive to carrier density (n) and thus have an easy tunability, which, however, leads to unstable or imprecise terahertz spectra. By deriving a simplified but universal form of plasmon frequencies, here we reveal a unified mechanism for generating unusual n-independent plasmons (DIPs) in all topological states with different dimensions. Remarkably, we predict that terahertz DIPs can be excited in 2D nodal-line and 1D nodal-point systems, confirmed by the first-principles calculations on almost all existing topological semimetals with diverse lattice symmetries. Besides of n independence, the feature of Fermi-velocity and degeneracy-factor dependences in DIPs can be applied to design topological superlattice and multi-walled carbon nanotube metamaterials for broadband terahertz spectroscopy and quantized terahertz plasmons, respectively. Surprisingly, high spatial confinement and quality factor, also insensitive to n, can be simultaneously achieved in these terahertz DIPs. Our findings pave the way to developing topological plasmonic devices for stable terahertz applications.
Nanostructuring hard optical crystals has so far been exclusively feasible at their surface, as stress induced crack formation and propagation has rendered high precision volume processes ineffective. We show that the inner chemical etching reactivit y of a crystal can be enhanced at the nanoscale by more than five orders of magnitude by means of direct laser writing. The process allows to produce cm-scale arbitrary three-dimensional nanostructures with 100 nm feature sizes inside large crystals in absence of brittle fracture. To showcase the unique potential of the technique, we fabricate photonic structures such as sub-wavelength diffraction gratings and nanostructured optical waveguides capable of sustaining sub-wavelength propagating modes inside yttrium aluminum garnet crystals. This technique could enable the transfer of concepts from nanophotonics to the fields of solid state lasers and crystal optics.
175 - Yurui Fang , Xiaorui Tian 2014
Assuming that the resonant surface plasmons on a spherical nanoparticle is formed by standing waves of two counter-propagating surface plasmon waves along the surface, by using Mie theory simulation, we find that the dispersions of surface plasmon re sonant modes supported by silver nanospheres match that of the surface plasmons on a semi-infinite medium-silver interface very well. This suggests that the resonant surface plasmons of a metal nanosphere can be treated as a propagating surface plasmon wave.
Electromagnetic metasurfaces enable the advanced control of surface-wave propagation by spatially tailoring the local surface reactance. Interestingly, tailoring the surface resistance distribution in space provides new, largely unexplored degrees of freedom. Here, we show that suitable spatial modulations of the surface resistance between positive (i.e., loss) and negative (i.e., gain) values can induce peculiar dispersion effects, far beyond a mere compensation. Taking inspiration from the parity-time symmetry concept in quantum physics, we put forward and explore a class of non-Hermitian metasurfaces that may exhibit extreme anisotropy mainly induced by the gain-loss interplay. Via analytical modeling and full-wave numerical simulations, we illustrate the associated phenomenon of surface-wave canalization, explore nonlocal effects and possible departures from the ideal conditions, and address the feasibility of the required constitutive parameters. Our results suggest intriguing possibilities to dynamically reconfigure the surface-wave propagation, and are of potential interest for applications to imaging, sensing and communications.
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of struct ured metamaterial elements (metamolecules) and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا