ﻻ يوجد ملخص باللغة العربية
This article presents a derivation of analytical predictions for steady-state distributions of netto time gaps among clusters of vehicles moving inside a traffic stream. Using the thermodynamic socio-physical traffic model with short-ranged repulsion between particles (originally introduced in [Physica A textbf{333} (2004) 370]) we firstly derive the time-clearance distribution in the model. Consecutively, the statistical distributions for the so-called time multi-clearances are calculated by means of theory of functional convolutions. Moreover, all the theoretical surmises used during the above-mentioned calculations are proven by the statistical analysis of traffic data. The mathematical predictions acquired in this paper are thoroughly compared with relevant empirical quantities and discussed in the context of three-phase traffic theory.
This article mediates an mathematical insight to the theory of vehicular headways measured on signalized crossroads. Considering both, mathematical and empirical substances of the socio-physical system studied, we firstly formulate several theoretica
In the last years, researchers have realized the difficulties of fitting power-law distributions properly. These difficulties are higher in Zipfs systems, due to the discreteness of the variables and to the existence of two representations for these systems, i.e., t
The question of exclusion region construction in new phenomenon searches has been causing considerable discussions for many years and yet no clear mathematical definition of the problem has been stated so far. In this paper we formulate the problem i
Combining measurements which have theoretical uncertainties is a delicate matter, due to an unclear statistical basis. We present an algorithm based on the notion that a theoretical uncertainty represents an estimate of bias.
Half-lives of radionuclides span more than 50 orders of magnitude. We characterize the probability distribution of this broad-range data set at the same time that explore a method for fitting power-laws and testing goodness-of-fit. It is found that t