ترغب بنشر مسار تعليمي؟ اضغط هنا

A Biased Review of Sociophysics

46   0   0.0 ( 0 )
 نشر من قبل Dietrich Stauffer
 تاريخ النشر 2012
والبحث باللغة English
 تأليف Dietrich Stauffer




اسأل ChatGPT حول البحث

Various aspects of recent sociophysics research are shortly reviewed: Schelling model as an example for lack of interdisciplinary cooperation, opinion dynamics, combat, and citation statistics as an example for strong interdisciplinarity.

قيم البحث

اقرأ أيضاً

Diseases spread over temporal networks of interaction events between individuals. Structures of these temporal networks hold the keys to understanding epidemic propagation. One early concept of the literature to aid in discussing these structures is concurrency -- quantifying individuals tendency to form time-overlapping partnerships. Although conflicting evaluations and an overabundance of operational definitions have marred the history of concurrency, it remains important, especially in the area of sexually transmitted infections. Today, much of theoretical epidemiology uses more direct models of contact patterns, and there is an emerging body of literature trying to connect methods to the concurrency literature. In this review, we will cover the development of the concept of concurrency and these new approaches.
This review puts the developments of the last few years in the context of the canonical time line (Kolmogorov to Iroshnikov-Kraichnan to Goldreich-Sridhar to Boldyrev). It is argued that Beresnyaks objection that Boldyrevs alignment theory violates t he RMHD rescaling symmetry can be reconciled with alignment if the latter is understood as an intermittency effect. Boldyrevs scalings, recovered in this interpretation, are thus an example of a physical theory of intermittency in a turbulent system. Emergence of aligned structures brings in reconnection physics, so the theory of MHD turbulence intertwines with the physics of tearing and current-sheet disruption. Recent work on this by Loureiro, Mallet et al. is reviewed and it is argued that we finally have a reasonably complete picture of MHD cascade all the way to the dissipation scale. This picture appears to reconcile Beresnyaks Kolmogorov scaling of the dissipation cutoff with Boldyrevs aligned cascade. These ideas also enable some progress in understanding saturated MHD dynamo, argued to be controlled by reconnection and to contain, at small scales, a tearing-mediated cascade similar to its strong-mean-field counterpart. On the margins of this core narrative, standard weak-MHD-turbulence theory is argued to require adjustment - and a scheme for it is proposed - to take account of the part that a spontaneously emergent 2D condensate plays in mediating the Alfven-wave cascade. This completes the picture of the MHD cascade at large scales. A number of outstanding issues are surveyed, concerning imbalanced MHD turbulence (for which a new theory is proposed), residual energy, subviscous and decaying regimes of MHD turbulence (where reconnection again features prominently). Finally, it is argued that the natural direction of research is now away from MHD and into kinetic territory.
A taxonomy is a standardized framework to classify and organize items into categories. Hierarchical taxonomies are ubiquitous, ranging from the classification of organisms to the file system on a computer. Characterizing the typical distribution of i tems within taxonomic categories is an important question with applications in many disciplines. Ecologists have long sought to account for the patterns observed in species-abundance distributions (the number of individuals per species found in some sample), and computer scientists study the distribution of files per directory. Is there a universal statistical distribution describing how many items are typically found in each category in large taxonomies? Here, we analyze a wide array of large, real-world datasets -- including items lost and found on the New York City transit system, library books, and a bacterial microbiome -- and discover such an underlying commonality. A simple, non-parametric branching model that randomly categorizes items and takes as input only the total number of items and the total number of categories successfully reproduces the abundance distributions in these datasets. This result may shed light on patterns in species-abundance distributions long observed in ecology. The model also predicts the number of taxonomic categories that remain unrepresented in a finite sample.
We present an overview of a series of results obtained from the analysis of human behavior in a virtual environment. We focus on the massive multiplayer online game (MMOG) Pardus which has a worldwide participant base of more than 400,000 registered players. We provide evidence for striking statistical similarities between social structures and human-action dynamics in the real and virtual worlds. In this sense MMOGs provide an extraordinary way for accurate and falsifiable studies of social phenomena. We further discuss possibilities to apply methods and concepts developed in the course of these studies to analyse oral and written narratives.
Modularity structures are common in various social and biological networks. However, its dynamical origin remains an open question. In this work, we set up a dynamical model describing the evolution of a social network. Based on the observations of r eal social networks, we introduced a link-creating/deleting strategy according to the local dynamics in the model. Thus the coevolution of dynamics and topology naturally determines the network properties. It is found that for a small coupling strength, the networked system cannot reach any synchronization and the network topology is homogeneous. Interestingly, when the coupling strength is large enough, the networked system spontaneously forms communities with different dynamical states. Meanwhile, the network topology becomes heterogeneous with modular structures. It is further shown that in a certain parameter regime, both the degree and the community size in the formed network follow a power-law distribution, and the networks are found to be assortative. These results are consistent with the characteristics of many empirical networks, and are helpful to understand the mechanism of formation of modularity in complex networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا