ﻻ يوجد ملخص باللغة العربية
The Swift Gamma-ray Burst (GRB) observatory responds to GRB triggers with optical observations in ~ 100 s, but cannot respond faster than ~ 60 s. While some ground-based telescopes respond quickly, the number of sub-60 s detections remains small. In mid- to late-2013, the Ultra-Fast Flash Observatory-Pathfinder is to be launched on the Lomonosov spacecraft to investigate early optical GRB emission. This pathfinder mission is necessarily limited in sensitivity and event rate; here we discuss a next generation rapid-response space observatory. We list science topics motivating our instruments, those that require rapid optical-IR GRB response, including: A survey of GRB rise shapes/times, measurements of optical bulk Lorentz factors, investigation of magnetic dominated (vs. non-magnetic) jet models, internal vs. external shock origin of prompt optical emission, the use of GRBs for cosmology, and dust evaporation in the GRB environment. We also address the impacts of the characteristics of GRB observing on our instrument and observatory design. We describe our instrument designs and choices for a next generation observatory as a second instrument on a low-earth orbit spacecraft, with a 120 kg instrument mass budget. Restricted to relatively modest mass and power, we find that a coded mask X-ray camera with 1024 cm2 of detector area could rapidly locate about 64 GRB triggers/year. Responding to the locations from the X-ray camera, a 30 cm aperture telescope with a beam-steering system for rapid (~ 1 s) response and a near-IR camera should detect ~ 29 GRB, given Swift GRB properties. Am additional optical camera would give a broadband optical-IR slope, allowing dynamic measurement of dust extinction at the source, for the first time.
Hundreds of gamma-ray burst (GRB) UV-optical light curves have been measured since the discovery of optical afterglows, however, even after nearly 5 years of operation of the SWIFT observatory, only a handful of measurements have been made soon (with
Hundreds of gamma-ray burst (GRB) optical light curves have been measured since the discovery of optical afterglows. However, even after nearly 7 years of operation of the Swift Observatory, only a handful of measurements have been made soon (within
We describe plans for the development of the Southern Wide-field Gamma-ray Observatory (SWGO), a next-generation instrument with sensitivity to the very-high-energy (VHE) band to be constructed in the Southern Hemisphere. SWGO will provide wide-field
We present motivations for and study feasibility of a small, rapid optical to IR response gamma ray burst (GRB) space observatory. By analyzing existing GRB data, we give realistic detection rates for X-ray and optical/IR instruments of modest size u
The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the VHE gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude