ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal nanoparticles with sharp corners: Universal properties of plasmon resonances

90   0   0.0 ( 0 )
 نشر من قبل Maxim Gorkunov V
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We predict the simultaneous occurrence of two fundamental phenomena for metal nanoparticles possessing sharp corners: First, the main plasmonic dipolar mode experiences strong red shift with decreasing corner curvature radius; its resonant frequency is controlled by the apex angle of the corner and the normalized (to the particle size) corner curvature. Second, the split-off plasmonic mode experiences strong localization at the corners. Altogether, this paves the way for tailoring of metal nano-structures providing wavelength-selective excitation of localized plasmons and a strong near-field enhancement of linear and nonlinear optical phenomena.

قيم البحث

اقرأ أيضاً

Carbon nanotubes provide a rare access point into the plasmon physics of one-dimensional electronic systems. By assembling purified nanotubes into uniformly sized arrays, we show that they support coherent plasmon resonances, that these plasmons enha nce and hybridize with phonons, and that the phonon-plasmon resonances have quality factors as high as 10. Because coherent nanotube plasmonics can strengthen light-matter interactions, it provides a compelling platform for surface-enhanced infrared spectroscopy and tunable, high-performance optical devices at the nanometer scale.
The optical properties of some nanomaterials can be controlled by an external magnetic field, providing active functionalities for a wide range of applications, from single-molecule sensing to nanoscale nonreciprocal optical isolation. Materials with broadband tunable magneto-optical response are therefore highly desired for various components in next-generation integrated photonic nanodevices. Concurrently, hyperbolic metamaterials received a lot of attention in the past decade since they exhibit unusual properties that are rarely observed in nature and provide an ideal platform to control the optical response at the nanoscale via careful design of the effective permittivity tensor, surpassing the possibilities of conventional systems. Here, we experimentally study magnetic circular dichroism in a metasurface made of type-II hyperbolic nanoparticles on a transparent substrate. Numerical simulations confirm the experimental findings, and an analytical model is established to explain the physical origin of the observed magneto-optical effects, which can be described in terms of the coupling of fundamental electric and magnetic dipole modes with an external magnetic field. Our system paves the way for the development of nanophotonic active devices combining the benefits of sub-wavelength light manipulation in hyperbolic metamaterials supporting a large density of optical states with the ability to freely tune the magneto-optical response via control over the anisotropic permittivity of the system.
105 - Maxim Durach 2018
We propose a general and complete classification of all possible new and old kinds of surface plasmon waves that can propagate at boundaries of arbitrary linear, local bi-anisotropic media, including the quartic metamaterials. For arbitrary frequency , wavelength, propagation direction, penetration depths and fields of the proposed surface plasmon waves we found the dispersion condition and determined the 72-parametric class of media that support a particular surface plasmon. A member of each class is a pair of anisotropic materials without magnetoelectric couplings.
Avalanche phenomena leverage steeply nonlinear dynamics to generate disproportionately high responses from small perturbations and are found in a multitude of events and materials, enabling technologies including optical phase-conjugate imaging, infr ared quantum counting, and efficient upconverted lasing. However, the photon avalanching (PA) mechanism underlying these optical innovations has been observed only in bulk materials and aggregates, and typically at cryogenic temperatures, limiting its utility and impact. Here, we report the realization of PA at room temperature in single nanostructures--small, Tm-doped upconverting nanocrystals--and demonstrate their use in superresolution imaging at near-infrared (NIR) wavelengths within spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave or pulsed lasers and exhibit all of the defining features of PA. These hallmarks include excitation power thresholds, long rise time at threshold, and a dominant excited-state absorption that is >13,000x larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of pump intensity. This enables the realization of photon-avalanche single-beam superresolution imaging (PASSI), achieving sub-70 nm spatial resolution using only simple scanning confocal microscopy and before any computational analysis. Pairing their steep nonlinearity with existing superresolution techniques and computational methods, ANPs allow for imaging with higher resolution and at ca. 100-fold lower excitation intensities than is possible with other probes. The low PA threshold and exceptional photostability of ANPs also suggest their utility in a diverse array of applications including sub-wavelength bioimaging, IR detection, temperature and pressure transduction, neuromorphic computing, and quantum optics.
Cylindrical vector beam (CVB) is a structured lightwave characterized by its topologically nontrivial nature of the optical polarization. The unique electromagnetic field configuration of CVBs has been exploited to optical tweezers, laser acceleratio ns, and so on. However, use of CVBs in research fields outside optics such as condensed matter physics has not progressed. In this paper, we propose potential applications of CVBs to those fields based on a general argument on their absorption by matter. We show that pulse azimuthal CVBs around terahertz (THz) or far-infrared frequencies can be a unique and powerful mean for time-resolved spectroscopy of magnetic properties of matter and claim that an azimuthal electric field of a pulse CVB would be a novel way of studying and controlling edge currents in topological materials. We also demonstrate how powerful CVBs will be as a tool for Floquet engineering of nonequilibrium states of matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا