ترغب بنشر مسار تعليمي؟ اضغط هنا

Raffaello Caverni (1837 - 1900) and the Society for the progress of the sciences: an independent priest criticized by the lay scientists

51   0   0.0 ( 0 )
 نشر من قبل Dino Boccaletti
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dino Boccaletti




اسأل ChatGPT حول البحث

Raffaello Caverni, a Catholic priest, was a truly lay and anti-establishment intellectual in his opinions both on Darwin and on Galileo. He opposed the mythicization of Galileo, as a rule in Italy after the unification, even though he considered Galileo a great scientist. As a consequence the scientific community of that time, under the influence of Antonio Favaro, bitterly censured his work Storia del Metodo Sperimentale in Italia.In this way, Cavernis book was removed from the scientific debate in Italy for at least forty years.

قيم البحث

اقرأ أيضاً

52 - Pablo Jensen 2008
Most scientific institutions acknowledge the importance of opening the so-called ivory tower of academic research through popularization, industrial collaboration or teaching. However, little is known about the actual openness of scientific instituti ons and how their proclaimed priorities translate into concrete measures. This paper gives an idea of some actual practices by studying three key points: the proportion of researchers who are active in wider dissemination, the academic productivity of these scientists, and the institutional recognition of their wider dissemination activities in terms of their careers. We analyze extensive data about the academic production, career recognition and teaching or public/industrial outreach of several thousand of scientists, from many disciplines, from Frances Centre National de la Recherche Scientifique. We find that, contrary to what is often suggested, scientists active in wider dissemination are also more active academically. However, their dissemination activities have almost no impact (positive or negative) on their careers.
Energy is a complex idea that cuts across scientific disciplines. For life science students, an approach to energy that incorporates chemical bonds and chemical reactions is better equipped to meet the needs of life sciences students than a tradition al introductory physics approach that focuses primarily on mechanical energy. We present a curricular sequence, or thread, designed to build up students understanding of chemical energy in an introductory physics course for the life sciences. This thread is designed to connect ideas about energy from physics, biology, and chemistry. We describe the kinds of connections among energetic concepts that we intended to develop to build interdisciplinary coherence, and present some examples of curriculum materials and student data that illustrate our approach.
In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, k, by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This o ptical method based on the first principles of statistical mechanics is an alternative to the acoustical method which has led to the unique determination of k published by the CODATA with a relative accuracy of 1.7 ppm. We report on the first measurement of the Boltzmann constant by laser spectroscopy with a statistical uncertainty below 10 ppm, more specifically 6.4 ppm. This progress results from improvements in the detection method and in the statistical treatment of the data. In addition, we have recorded the hyperfine structure of the probed saQ(6,3) rovibrational line of ammonia by saturation spectroscopy and thus determine very precisely the induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that, in our well chosen experimental conditions, saturation effects have a negligible impact on the linewidth. Finally, we draw the route to future developments for an absolute determination of with an accuracy of a few ppm.
Propagation of linear constraints has become a crucial sub-routine in modern Mixed-Integer Programming (MIP) solvers. In practice, iterative algorithms with tolerance-based stopping criteria are used to avoid problems with slow or infinite convergenc e. However, these heuristic stopping criteria can pose difficulties for fairly comparing the efficiency of different implementations of iterative propagation algorithms in a real-world setting. Most significantly, the presence of unbounded variable domains in the problem formulation makes it difficult to quantify the relative size of reductions performed on them. In this work, we develop a method to measure -- independently of the algorithmic design -- the progress that a given iterative propagation procedure has made at a given point in time during its execution. Our measure makes it possible to study and better compare the behavior of bounds propagation algorithms for linear constraints. We apply the new measure to answer two questions of practical relevance: (i) We investigate to what extent heuristic stopping criteria can lead to premature termination on real-world MIP instances. (ii) We compare a GPU-parallel propagation algorithm against a sequential state-of-the-art implementation and show that the parallel version is even more competitive in a real-world setting than originally reported.
76 - Pascal Marquet 2021
An attempt is made to avoid the difficulty of the infinite reaction of the electron on itself, which occurs in quantum electrodynamics, by introducing difference equations instead of differential equations. This vision allows the difficulty of the re lativistic wave equation emphasised by Klein, for example, to be essentially eliminated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا