ﻻ يوجد ملخص باللغة العربية
The possibilty of performing high-rate calorimetry with a slow scintillator crystal is studied. In this experimental situation, to avoid pulse pile-up, it can be necessary to base the energy measurement on only a fraction of the emitted light, thus spoiling the energy resolution. This effect was experimentally studied with a BGO crystal and a photomultiplier followed by an integrator, by measuring the peak amplitude of the signals. The experimental data show that the energy resolution is exclusively due to the statistical fluctuations of the number of photoelectrons contributing to the peak amplitude. When such number is small its fluctuations are even smaller than those predicted by Poisson statistics. These results were confirmed by a Monte Carlo simulation which allows to estimate, in a general case, the energy resolution, given the total number of photoelectrons, the scintillation time and the integration time.
A new timing detector measuring ~50 MeV/c positrons is under development for the MEG II experiment, aiming at a time resolution $sigma_t sim 30~mathrm{ps}$. The resolution is expected to be achieved by measuring each positron time with multiple count
In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, toget
We present results for time resolution studies performed on three different scintillating plastics and two silicon photo-multipliers. These studies are intended to determine whether scintillating plastic/silicon photo-multiplier systems can be employ
Using thin scintillating fibers with Silicon Photomultiplier (SiPM) readout a mo dular high-resolution charged-particle tracking detector has been designed. The fiber modules consist of 2 x 5 layers of 128 round multiclad scintillating fiber s of 0.2
This paper describes the measurements of energy and time response and resolution of a 3 x 3 array made of undoped CsI crystals coupled to large area Hamamatsu Multi Pixel Photon Counters. The measurements have been performed using the electron beam o