ﻻ يوجد ملخص باللغة العربية
DAE$delta$ALUS (Decay-At-rest Experiment for $delta_{CP}$ studies At the Laboratory for Underground Science) provides a new approach to the search for CP violation in the neutrino sector. High-power continuous-wave proton cyclotrons efficiently provide the necessary proton beams with an energy of up to 800 MeV to create neutrinos from pion and muon decay-at-rest. The experiment searches for $bar{ u}_{mu} rightarrow bar{ u}_e$ at short baselines corresponding to the atmospheric $Delta m^2$ region. The $bar{ u}_e$ will be detected via inverse beta decay. Thus, the cyclotrons will be employed at a future ultra-large gadolinium-doped water or scintillator detector. In this paper we address the most challenging questions regarding a cyclotron-based high-power proton driver in the megawatt range with a kinetic energy of 800 MeV. Aspects of important subsystems like the ion source and injection chain, the magnet design and radio frequency system will be addressed. Precise beam dynamics simulations, including space charge and the $text{H}_2^+$ stripping process, are the base for the characterization and quantification of the beam halo -- one of the most limiting processes in high-power particle accelerators.
As we enter the age of precision measurement in neutrino physics, improved flux sources are required. These must have a well-defined flavor content with energies in ranges where backgrounds are low and cross section knowledge is high. Very few source
This report provides a first design for H2+ accelerators as the DAEdALUS neutrino sources. A description of all aspects of the system, from the ion source to the extracted beam, is provided. The analysis provides a first proof of principle of a full
Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasib
There is great need for high intensity proton beams from compact particle accelerators in particle physics, medical isotope production, and materials- and energy-research. To address this need, we present, for the first time, a design for a compact i
Space charge effects, being one of the most significant collective effects, play an important role in high intensity cyclotrons. However, for cyclotrons with small turn separation, other existing effects are of equal importance. Interactions of radia