ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement fidelity of the standard quantum teleportation channel

112   0   0.0 ( 0 )
 نشر من قبل Ming-Yong Ye
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the standard quantum teleportation protocol where a general bipartite state is used as entanglement resource. We use the entanglement fidelity to describe how well the standard quantum teleportation channel transmits quantum entanglement and give a simple expression for the entanglement fidelity when it is averaged on all input states.

قيم البحث

اقرأ أيضاً

We analyze the average fidelity (say, F) and the fidelity deviation (say, D) in noisy-channel quantum teleportation. Here, F represents how well teleportation is performed on average and D quantifies whether the teleportation is performed impartially on the given inputs, that is, the condition of universality. Our analysis results prove that the achievable maximum average fidelity ensures zero fidelity deviation, that is, perfect universality. This structural trait of teleportation is distinct from those of other limited-fidelity probabilistic quantum operations, for instance, universal-NOT or quantum cloning. This feature is confirmed again based on a tighter relationship between F and D in the qubit case. We then consider another realistic noise model where F decreases and D increases due to imperfect control. To alleviate such deterioration, we propose a machine-learning-based algorithm. We demonstrate by means of numerical simulations that the proposed algorithm can stabilize the system. Notably, the recovery process consists solely of the maximization of F, which reduces the control time, thus leading to a faster cure cycle.
We introduce a figure of merit for a quantum memory which measures the preservation of entanglement between a qubit stored in and retrieved from the memory and an auxiliary qubit. We consider a general quantum memory system consisting of a medium of two level absorbers, with the qubit to be stored encoded in a single photon. We derive an analytic expression for our figure of merit taking into account Gaussian fluctuations in the Hamiltonian parameters, which for example model inhomogeneous broadening and storage time dephasing. Finally we specialize to the case of an atomic quantum memory where fluctuations arise predominantly from Doppler broadening and motional dephasing.
Quantum entanglement enables tasks not possible in classical physics. Many quantum communication protocols require the distribution of entangled states between distant parties. Here we experimentally demonstrate the successful transmission of an enta ngled photon pair over a 144 km free-space link. The received entangled states have excellent, noise-limited fidelity, even though they are exposed to extreme attenuation dominated by turbulent atmospheric effects. The total channel loss of 64 dB corresponds to the estimated attenuation regime for a two-photon satellite quantum communication scenario. We confirm that the received two-photon states are still highly entangled by violating the CHSH inequality by more than 5 standard deviations. From a fundamental point of view, our results show that the photons are virtually not subject to decoherence during their 0.5 ms long flight through air, which is encouraging for future world-wide quantum communication scenarios.
Quantum teleportation provides a way to transfer unknown quantum states from one system to another, without physical transmission of the object itself. The quantum channels in perfect teleportation (with 100% success probability and fidelity) to date were limited to maximally entangled states. Here, we propose a scheme for perfect teleportation of a qubit through a high-dimensional quantum channel, in a pure state with two equal largest Schmidt coefficients. The quantum channel requires appropriate joint measurement by the sender, Alice, and enough classical information sent to the receiver, Bob. The entanglement of Alices measurement and classical bits she sends, increasing with the entanglement of quantum channel, can be regard as Alices necessary capabilities to use the quantum channel. The two capabilities appears complementary to each other, as the entanglement in Alices measurement may be partially replaced by the classical bits.
Traditional continuous variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous variable teleportation that approaches unit fidelity with finite r esources. The protocol is not based on squeezed states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, Schrodinger cat states and two-mode squeezed state and we find several situations in which near-unity teleportation fidelity can be obtained with modest resources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا