ﻻ يوجد ملخص باللغة العربية
In this paper we describe a general probabilistic framework for modeling waveforms such as heartbeats from ECG data. The model is based on segmental hidden Markov models (as used in speech recognition) with the addition of random effects to the generative model. The random effects component of the model handles shape variability across different waveforms within a general class of waveforms of similar shape. We show that this probabilistic model provides a unified framework for learning these models from sets of waveform data as well as parsing, classification, and prediction of new waveforms. We derive a computationally efficient EM algorithm to fit the model on multiple waveforms, and introduce a scoring method that evaluates a test waveform based on its shape. Results on two real-world data sets demonstrate that the random effects methodology leads to improved accuracy (compared to alternative approaches) on classification and segmentation of real-world waveforms.
Traditional voxel-level multiple testing procedures in neuroimaging, mostly $p$-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based p
The equations of a physical constitutive model for material stress within tantalum grains were solved numerically using a tetrahedrally meshed volume. The resulting output included a scalar vonMises stress for each of the more than 94,000 tetrahedra
We demonstrate the application of pattern recognition algorithms via hidden Markov models (HMM) for qubit readout. This scheme provides a state-path trajectory approach capable of detecting qubit state transitions and makes for a robust classificatio
In unsupervised classification, Hidden Markov Models (HMM) are used to account for a neighborhood structure between observations. The emission distributions are often supposed to belong to some parametric family. In this paper, a semiparametric model
Understanding centennial scale climate variability requires data sets that are accurate, long, continuous and of broad spatial coverage. Since instrumental measurements are generally only available after 1850, temperature fields must be reconstructed