ﻻ يوجد ملخص باللغة العربية
The concept of cross density of states characterizes the intrinsic spatial coherence of complex photonic or plasmonic systems, independently on the illumination conditions. Using this tool and the associated intrinsic coherence length, we demonstrate unambiguously the spatial squeezing of eigenmodes on disordered fractal metallic films, thus clarifying a basic issue in plasmonics.
The geometric phase and topological property for one-dimensional hybrid plasmonic-photonic crystals consisting of a simple lattice of graphene sheets are investigated systematically. For transverse magnetic waves, both plasmonic and photonic modes ex
We report systematic studies of plasmonic and photonic guiding modes in large-area chemical-vapor-deposition-grown graphene on nanostructured silicon substrates. Light interaction in graphene with substrate photonic crystals can be classified into fo
Hybrid plasmonic photonic structures combine the plasmonic response with the photonic band gap, holding promise for utilization as optical switches and sensors. Here, we demonstrate the active modulation of the optical response in such structures wit
Despite the fact that incandescent sources are usually spatially incoherent, it has been known for some time that a proper design of a thermal source can modify its spatial coherence. A natural question is whether it is possible to extend this analys
The invention of lasers 60 years ago is one of the greatest breakthroughs in modern optics. Throughout the years, lasers have enabled major scientific and technological advancements, and have been exploited in numerous applications due to their advan