ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of the XENON100 Dark Matter Search Data

106   0   0.0 ( 0 )
 نشر من قبل Teresa Marrodan Undagoitia
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This paper describes the general methods developed for the analysis of the XENON100 data. These methods have been used in the 100.9 and 224.6 live days science runs from which results on spin-independent elastic, spin-dependent elastic and inelastic WIMP-nucleon cross-sections have already been reported.



قيم البحث

اقرأ أيضاً

131 - E.Aprile , M.Alfonsi , K.Arisaka 2013
The XENON100 experiment, installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), aims to directly detect dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering off xenon nuclei. This pape r presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from ($alpha$,n) and spontaneous fission reactions due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on Monte Carlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by the XENON100 experiment in 2011 and 2012, 0.11$^{+0.08}_{-0.04}$ events and 0.17$^{+0.12}_{-0.07}$ events, respectively, and conclude that they do not limit the sensitivity of the experiment.
We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of mag netic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMPs magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c$^2$ and 122.7 GeV/c$^2$ are excluded at 3.3 $sigma$ and 9.3 $sigma$, respectively.
It is generally inferred from astronomical measurements that Dark Matter (DM) comprises approximately 27% of the energy-density of the universe. If DM is a subatomic particle, a possible candidate is a Weakly Interacting Massive Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for evidence of WIMP-nuclear collisions. DS is located underground at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three active, embedded components; an outer water veto (CTF), a liquid scintillator veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper describes the data acquisition and electronic systems of the DS detectors, designed to detect the residual ionization from such collisions.
The XENON100 dark matter experiment uses liquid xenon (LXe) in a time projection chamber (TPC) to search for Xe nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper we present a deta iled description of the detector design and present performance results, as established during the commissioning phase and during the first science runs. The active target of XENON100 contains 62 kg of LXe, surrounded by an LXe veto of 99 kg, both instrumented with photomultiplier tubes (PMTs) operating inside the liquid or in Xe gas. The LXe target and veto are contained in a low-radioactivity stainless steel vessel, embedded in a passive radiation shield. The experiment is installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy and has recently published results from a 100 live-days dark matter search. The ultimate design goal of XENON100 is to achieve a spin-independent WIMP-nucleon scattering cross section sensitivity of sigma = 2x10^-45 cm^2 for a 100 GeV/c^2 WIMP.
We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorde d between April 2013 and January 2014 prior to combining the results. The ultra-low electromagnetic background of the experiment, ~$5 times 10^{-3}$ events/(keV$_{mathrm{ee}}times$kg$times$day) before electronic recoil rejection, together with the increased exposure of 48 kg $times$ yr improves the sensitivity. A profile likelihood analysis using an energy range of (6.6 - 43.3) keV$_{mathrm{nr}}$ sets a limit on the elastic, spin-independent WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/$c^2$, with a minimum of 1.1 $times 10^{-45}$ cm$^2$ at 50 GeV/$c^2$ and 90% confidence level. We also report updated constraints on the elastic, spin-dependent WIMP-nucleon cross sections obtained with the same data. We set upper limits on the WIMP-neutron (proton) cross section with a minimum of 2.0 $times 10^{-40}$ cm$^2$ (52$times 10^{-40}$ cm$^2$) at a WIMP mass of 50 GeV/$c^2$, at 90% confidence level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا