ﻻ يوجد ملخص باللغة العربية
Observations of the atomic and molecular line emission associated with jets and outflows emitted by young stellar objects can be used to trace the various evolutionary stages they pass through as they evolve to become main sequence stars. To understand the relevance of atomic and molecular cooling in shocks, and how accretion and ejection efficiency evolves with the source evolutionary state, we will study the far-infrared counterparts of bright optical jets associated with Class I and II sources in Taurus (T Tau, DG Tau A, DG Tau B, FS Tau A+B, and RW Aur). We have analysed Herschel/PACS observations of a number of atomic ([OI]63um, 145um, [CII]158um) and molecular (high-J CO, H2O, OH) lines, collected within the OTKP GASPS. To constrain the origin of the detected lines we have compared the FIR emission maps with the emission from optical-jets and millimetre-outflows, and the line fluxes and ratios with predictions from shock and disk models. All of the targets are associated with extended emission in the atomic lines correlated with the direction of the optical jet/mm-outflow. The atomic lines can be excited in fast dissociative J-shocks. The molecular emission, on the contrary, originates from a compact region, that is spatially and spectrally unresolved. Slow C- or J- shocks with high pre-shock densities reproduce the observed H2O and high-J CO lines; however, the disk and/or UV-heated outflow cavities may contribute to the emission. While the cooling is dominated by CO and H2O lines in Class 0 sources, [OI] becomes an important coolant as the source evolves and the environment is cleared. The cooling and mass loss rates estimated for Class II and I sources are one to four orders of magnitude lower than for Class 0 sources. This provides strong evidence to indicate that the outflow activity decreases as the source evolves.
We report Herschel/PACS photometric observations at 70 {mu}m and 160 {mu}m of LRLL54361 - a suspected binary protostar that exhibits periodic (P=25.34 days) flux variations at shorter wavelengths (3.6 {mu}m and 4.5 {mu}m) thought to be due to pulsed
At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic s
The Herschel Space Observatory was used to observe ~ 120 pre-main-sequence stars in Taurus as part of the GASPS Open Time Key project. PACS was used to measure the continuum as well as several gas tracers such as [OI] 63 mu m, [OI] 145 mu m, [CII] 15
Herbig Ae/Be objects are pre-main sequence stars surrounded by gas- and dust-rich circumstellar discs. These objects are in the throes of star and planet formation, and their characterisation informs us of the processes and outcomes of planet formati
We present all Herschel PACS photometer observations of Mars, Saturn, Uranus, Neptune, Callisto, Ganymede, and Titan. All measurements were carefully inspected for quality problems, were reduced in a (semi-)standard way, and were calibrated. The deri