ﻻ يوجد ملخص باللغة العربية
We attempt to determine the nature of the high energy emission of the radio galaxy 3C 111, by distinguishing between the effects of the thermal and non-thermal processes. We study the X-ray spectrum of 3C 111 between 0.4 keV and 200 keV, and its spectral energy distribution, using data from the Suzaku satellite combined with INTEGRAL, Swift/BAT data, and Fermi/LAT data. We then model the overall spectral energy distribution including radio and infrared data. The combined Suzaku, Swift and INTEGRAL data are represented by an absorbed exponentially cut-off power-law with reflection from neutral material with a photon index Gamma = 1.68+-0.03, a high-energy cut-off Ecut = 227+143-67 keV, a reflection component with R = 0.7+-0.3 and a Gaussian component to account for the iron emission-line at 6.4 keV with an equivalent width of EW = 85+-11 eV. The X-ray spectrum appears dominated by thermal, Seyfert-like processes, but there are also indications of non-thermal processes. The radio to gamma-ray spectral energy distribution can be fit with a single-zone synchrotron-self Compton model, with no need for an additional thermal component. We suggest a hybrid scenario to explain the broad-band emission, including a thermal component (iron line, reflection) that dominates in the X-ray regime and a non-thermal one to explain the spectral energy distribution.
The radio source 3C 264, hosted by the giant elliptical galaxy NGC 3862, was observed with VERITAS between February 2017 and May 2019. These deep observations resulted in the discovery of very-high-energy (VHE; E $>100$ GeV) $gamma$-ray emission from
The blazar 3C454.3 exhibited a strong flare seen in gamma-rays, X-rays, and optical/NIR bands during 3--12 December 2009. Emission in the V and J bands rose more gradually than did the gamma-rays and soft X-rays, though all peaked at nearly the same
We present a multi-wavelength temporal analysis of the blazar 3C 454.3 during the high $gamma$-ray active period from May-December, 2014. Except for X-rays, the period is well sampled at near-infrared (NIR)-optical by the emph{SMARTS} facility and th
The long-term optical, X-ray and $gamma$-ray data of blazar 3C 279 have been compiled from $Swift$-XRT, $RXTE$ PCA, $Fermi$-LAT, SMARTS and literature. The source exhibits strong variability on long time scales. Since 1980s to now, the optical $R$ ba
We present six-year multi-wavelength monitoring result for broad-line radio galaxy 3C 120. The source was sporadically detected by Fermi-LAT and after the MeV/GeV gamma-ray detection the 43 GHz radio core brightened and a knot ejected from an unresol