ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Spin-Accumulation in Electric Conductors and Insulators

73   0   0.0 ( 0 )
 نشر من قبل Jean-Eric Wegrowe
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interpretation of some recent measurements of spin-dependent voltage for which the electric conduction does not play a role rises some new fundamental questions about the effects of spin-dependent heat currents. A two spin-channel model is proposed in order to describe the effect of out-of-equilibrium spin-dependent heat carriers in electric conductors and insulators. It is shown that thermal spin-accumulation can be generated by the heat currents only over an arbitrarily long distance for both electric conductors or electric insulators. The diffusion equations for thermal spin-accumulation are derived in both cases, and the principle of its detection based on Spin-Nernst effect is described.

قيم البحث

اقرأ أيضاً

75 - Y. Ando , Y. Maeda , K. Kasahara 2011
We demonstrate spin-accumulation signals controlled by the gate voltage in a metal-oxide-semiconductor field effect transistor structure with a Si channel and a CoFe/$n^{+}$-Si contact at room temperature. Under the application of a back-gate voltage , we clearly observe the three-terminal Hanle-effect signal, i.e., spin-accumulation signal. The magnitude of the spin-accumulation signals can be reduced with increasing the gate voltage. We consider that the gate controlled spin signals are attributed to the change in the carrier density in the Si channel beneath the CoFe/$n^{+}$-Si contact. This study is not only a technological jump for Si-based spintronic applications with gate structures but also reliable evidence for the spin injection into the semiconducting Si channel at room temperature.
93 - A. Jain , C. Vergnaud , J. Peiro 2012
In this letter, we first show electrical spin injection in the germanium conduction band at room temperature and modulate the spin signal by applying a gate voltage to the channel. The corresponding signal modulation agrees well with the predictions of spin diffusion models. Then by setting a temperature gradient between germanium and the ferromagnet, we create a thermal spin accumulation in germanium without any tunnel charge current. We show that temperature gradients yield larger spin accumulations than pure electrical spin injection but, due to competing microscopic effects, the thermal spin accumulation in germanium remains surprisingly almost unchanged under the application of a gate voltage to the channel.
134 - Yan-Feng Zhou , Ai-Min Guo , 2018
We study the influence of step defect on surface states in three-dimensional topological insulators subject to a perpendicular magnetic field. By calculating the energy spectrum of the surface states, we find that Landau levels (LLs) can form on flat regions of the surface and are distant from the step defect, and several subbands emerge at side surface of the step defect. The subband which connects to the two zeroth LLs is spin-polarized and chiral. In particular, when the electron transports along the side surface, the electron spin direction can be manipulated arbitrarily by gate voltage. And no reflection occurs even if the electron spin direction is changed. This provides a fascinating avenue to control the electron spin easily and coherently. In addition, regarding the subbands with high LL index, there exist spin-momentum locking helical states and the quantum spin Hall effect can appear.
We report electronic control and measurement of an imbalance between spin-up and spin-down electrons in micron-scale open quantum dots. Spin injection and detection was achieved with quantum point contacts tuned to have spin-selective transport, with four contacts per dot for realizing a non-local spin-valve circuit. This provides an interesting system for studies of spintronic effects since the contacts to reservoirs can be controlled and characterized with high accuracy. We show how this can be used to extract in a single measurement the relaxation time for electron spins inside the dot ~ 300 ps and the degree of spin polarization of the contacts P ~ 0.8.
130 - Chang-An Li , Shu-Shan Wu 2019
The modern theory of electric polarization has recently been extended to higher multipole moments, such as quadrupole and octupole moments. The higher electric multipole insulators are essentially topological crystalline phases protected by underlyin g crystalline symmetries. Henceforth, it is natural to ask what are the consequences of symmetry breaking in these higher multipole insulators. In this work, we investigate topological phases and the consequences of symmetry breaking in generalized electric quadrupole insulators. Explicitly, we generalize the Benalcazar-Bernevig-Hughes model by adding specific terms in order to break the crystalline and non-spatial symmetries. Our results show that chiral symmetry breaking induces an indirect gap phase which hides corner modes in bulk bands, ruining the topological quadrupole phase. We also demonstrate that quadrupole moments can remain quantized even when mirror symmetries are absent in a generalized model. Furthermore, it is shown that topological quadrupole phase is robust against a unique type of disorder presented in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا