ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric properties of maximal monotone operators and convex functions which may represent them

71   0   0.0 ( 0 )
 نشر من قبل B. Svaiter F.
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف B. F. Svaiter




اسأل ChatGPT حول البحث

We study the relations between some geometric properties of maximal monotone operators and generic geometric and analytical properties of the functions on the associate Fitzpatrick family of convex representations. We also investigate under which conditions a convex function represents a maximal monotone operator with bounded range and provide an example of a non type (D) operator on this class.

قيم البحث

اقرأ أيضاً

In a recent paper in Journal of Convex Analysis the authors studied, in non-reflexive Banach spaces, a class of maximal monotone operators, characterized by the existence of a function in Fitzpatricks family of the operator which conjugate is above t he duality product. This property was used to prove that such operators satisfies a restricted version of Brondsted-Rockafellar property. In this work we will prove that if a single Fitzpatrick function of a maximal monotone operator has a conjugate above the duality product, then all Fitzpatrick function of the operator have a conjugate above the duality product. As a consequence, the family of maximal monotone operators with this property is just the class NI, previously defined and studied by Simons. We will also prove that an auxiliary condition used by the authors to prove the restricted Brondsted-Rockafellar property is equivalent to the assumption of the conjugate of the Fitzpatrick function to majorize the duality product.
We are concerned with surjectivity of perturbations of maximal monotone operators in non-reflexive Banach spaces. While in a reflexive setting, a classical surjectivity result due to Rockafellar gives a necessary and sufficient condition to maximal m onotonicity, in a non-reflexive space we characterize maximality using a ``enlarged version of the duality mapping, introduced previously by Gossez.
This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We also show that if t_0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t) - f(t_0))/(t - t_0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of phi circ f when f is operator convex or strongly operator convex.
In this work we are concerned with maximality of monotone operators representable by certain convex functions in non-reflexive Banach spaces. We also prove that these maximal monotone operators satisfy a Bronsted-Rockafellar type property. We show that if a function in XxX^* and its conjugate are above the duality product in their respective domains, then this function represents a maximal monotone operator.
We present a new sufficient condition under which a maximal monotone operator $T:Xtos X^*$ admits a unique maximal monotone extension to the bidual $widetilde T:X^{**} rightrightarrows X^*$. For non-linear operators this condition is equivalent to un iqueness of the extension. The class of maximal monotone operators which satisfy this new condition includes class of Gossez type D maximal monotone operators, previously defined and studied by J.-P. Gossez, and all maximal monotone operators of this new class satisfies a restricted version of Brondsted-Rockafellar condition. The central tool in our approach is the $mathcal{S}$-function defined and studied by Burachik and Svaiter in 2000 cite{BuSvSet02}(submission date, July 2000). For a generic operator, this function is the supremum of all convex lower semicontinuous functions which are majorized by the duality product in the graph of the operator. We also prove in this work that if the graph of a maximal monotone operator is convex, then this graph is an affine linear subspace.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا