ﻻ يوجد ملخص باللغة العربية
While the Gross--Pitaevskii equation is well-established as the canonical dynamical description of atomic Bose-Einstein condensates (BECs) at zero-temperature, describing the dynamics of BECs at finite temperatures remains a difficult theoretical problem, particularly when considering low-temperature, non-equilibrium systems in which depletion of the condensate occurs dynamically as a result of external driving. In this paper, we describe a fully time-dependent numerical implementation of a second-order, number-conserving description of finite-temperature BEC dynamics. This description consists of equations of motion describing the coupled dynamics of the condensate and non-condensate fractions in a self-consistent manner, and is ideally suited for the study of low-temperature, non-equilibrium, driven systems. The delta-kicked-rotor BEC provides a prototypical example of such a system, and we demonstrate the efficacy of our numerical implementation by investigating its dynamics at finite temperature. We demonstrate that the qualitative features of the system dynamics at zero temperature are generally preserved at finite temperatures, and predict a quantitative finite-temperature shift of resonance frequencies which would be relevant for, and could be verified by, future experiments.
We develop the number-conserving approach that has previously been used in a single component Bose-Einstein condensed dilute atomic gas, to describe consistent coupled condensate and noncondensate number dynamics, to an $n$-component condensate. The
We propose a generalization of the Feynman path integral using squeezed coherent states. We apply this approach to the dynamics of Bose-Einstein condensates, which gives an effective low energy description that contains both a coherent field and a sq
The non-equilibrium spatial dynamics in a two-component Bose-Einstein condensate were excited by controlled miscible-immiscible transition, in which immiscible condensates with domain structures are transferred to the miscible condensates by changing
We unravel the correlation effects of the second-order quantum phase transitions emerging on the ground state of a harmonically trapped spin-1 Bose gas, upon varying the involved Zeeman terms, as well as its breathing dynamics triggered by quenching
Ultracold quantum gases provide a unique setting for studying and understanding the properties of interacting quantum systems. Here, we investigate a multi-component system of $^{87}$Rb--$^{39}$K Bose-Einstein condensates (BECs) with tunable interact