ترغب بنشر مسار تعليمي؟ اضغط هنا

Athena (Advanced Telescope for High ENergy Astrophysics) Assessment Study Report for ESA Cosmic Vision 2015-2025

51   0   0.0 ( 0 )
 نشر من قبل Xavier Barcons
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Athena is an X-ray observatory-class mission concept, developed from April to December 2011 as a result of the reformulation exercise for L-class mission proposals in the framework of ESAs Cosmic Vision 2015-2025. Athenas science case is that of the Universe of extremes, from Black Holes to Large-scale structure. The specific science goals are structured around three main pillars: Black Holes and accretion physics, Cosmic feedback and Large-scale structure of the Universe. Underpinning these pillars, the study of hot astrophysical plasmas offered by Athena broadens its scope to virtually all corners of Astronomy. The Athena concept consists of two co-aligned X-ray telescopes, with focal length 12 m, angular resolution of 10 or better, and totalling an effective area of 1 m2 at 1 keV (0.5 m2 at 6 keV). At the focus of one of the telescopes there is a Wide Field Imager (WFI) providing a field of view of 24times 24, 150 eV spectral resolution at 6 keV, and high count rate capability. At the focus of the other telescope there is the X-ray Microcalorimeter Spectrometer (XMS), a cryogenic instrument offering a spectral resolution of 3 eV over a field of view of 2.3 times 2.3. Although Athena has not been selected as ESAs Cosmic Vision 2015-2025 L1 mission, its science goals and concept conform the basis of what should become ESAs X-ray astronomy flagship.

قيم البحث

اقرأ أيضاً

99 - X. Barcons , D. Barret , M. Bautz 2011
The International X-Ray Observatory (IXO) will address fundamental questions in astrophysics, including When did the first SMBH form? How does large scale structure evolve? What happens close to a black hole? What is the connection between these proc esses? What is the equation of state of matter at supra-nuclear density? This report presents an overview of the assessment study phase of the IXO candidate ESA L-class Cosmic Vision mission. We provide a description of the IXO science objectives, the mission implementation and the payload. The performance will offer more than an order of magnitude improvement in capability compared with Chandra and XMM-Newton. This observatory-class facility comprises a telescope with highly nested grazing incidence optics with a performance requirement of 2.5 sq.m. of effective area at 1.25 keV with a 5 PSF. There is an instrument complement that provides capabilities in imaging, spatially resolved spectroscopy, timing, polarimetry and high resolution dispersive spectroscopy. Since earlier submissions to the Astro2010 Decadal Survey, substantial technological progress has been made, particularly in the mirror development. Risk reduction measures and important programmatic choices have also been identified. An independent internal Technical and Programmatic Review has also been carried out by ESA, concluding with positive recommendations. Subject to successful conclusion of agreements between the partner space agencies, IXO is fully ready to proceed to further definition, moving towards an eventual launch in 2021-2022.
This report describes the 2014 study by the Science Definition Team (SDT) of the Wide-Field Infrared Survey Telescope (WFIRST) mission. It is a space observatory that will address the most compelling scientific problems in dark energy, exoplanets and general astrophysics using a 2.4-m telescope with a wide-field infrared instrument and an optical coronagraph. The Astro2010 Decadal Survey recommended a Wide Field Infrared Survey Telescope as its top priority for a new large space mission. As conceived by the decadal survey, WFIRST would carry out a dark energy science program, a microlensing program to determine the demographics of exoplanets, and a general observing program utilizing its ultra wide field. In October 2012, NASA chartered a Science Definition Team (SDT) to produce, in collaboration with the WFIRST Study Office at GSFC and the Program Office at JPL, a Design Reference Mission (DRM) for an implementation of WFIRST using one of the 2.4-m, Hubble-quality telescope assemblies recently made available to NASA. This DRM builds on the work of the earlier WFIRST SDT, reported by Green et al. (2012) and the previous WFIRST-2.4 DRM, reported by Spergel et. (2013). The 2.4-m primary mirror enables a mission with greater sensitivity and higher angular resolution than the 1.3-m and 1.1-m designs considered previously, increasing both the science return of the primary surveys and the capabilities of WFIRST as a Guest Observer facility. The addition of an on-axis coronagraphic instrument to the baseline design enables imaging and spectroscopic studies of planets around nearby stars.
Baikal-GVD is a neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-meganton subarrays (clusters). The design of Baikal-GVD allows one to search for astrophysical neutrinos already at early phases of the array const ruction. We present here preliminary results of a search for high-energy neutrinos with GVD in 2019-2020.
Previous measurements of the composition of Ultra-High Energy Cosmic Rays(UHECRs) made by the High Resolution Flys Eye(HiRes) and Pierre Auger Observatory(PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stere o detector and PAO is a hybrid detector. The five year Telescope Array(TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of Xmax are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.
A new family of parameters intended for composition studies in cosmic ray surface array detectors is proposed. The application of this technique to different array layout designs has been analyzed. The parameters make exclusive use of surface data co mbining the information from the total signal at each triggered detector and the array geometry. They are sensitive to the combined effects of the different muon and electromagnetic components on the lateral distribution function of proton and iron initiated showers at any given primary energy. Analytical and numerical studies have been performed in order to assess the reliability, stability and optimization of these parameters. Experimental uncertainties, the underestimation of the muon component in the shower simulation codes, intrinsic fluctuations and reconstruction errors are considered and discussed in a quantitative way. The potential discrimination power of these parameters, under realistic experimental conditions, is compared on a simplified, albeit quantitative way, with that expected from other surface and fluorescence estimators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا