ﻻ يوجد ملخص باللغة العربية
Recent experimental breakthroughs in trapping, cooling and controlling ultracold gases of polar molecules, magnetic and Rydberg atoms have paved the way toward the investigation of highly tunable quantum systems, where anisotropic, long-range dipolar interactions play a prominent role at the many-body level. In this article we review recent theoretical studies concerning the physics of such systems. Starting from a general discussion on interaction design techniques and microscopic Hamiltonians, we provide a summary of recent work focused on many-body properties of dipolar systems, including: weakly interacting Bose gases, weakly interacting Fermi gases, multilayer systems, strongly interacting dipolar gases and dipolar gases in 1D and quasi-1D geometries. Within each of these topics, purely dipolar effects and connections with experimental realizations are emphasized.
We investigate the properties of quantized vortices in a dipolar Bose-Einstein condensed gas by means of a generalised Gross-Pitaevskii equation. The size of the vortex core hugely increases by increasing the weight of the dipolar interaction and app
Experiments on quantum degenerate Fermi gases of magnetic atoms and dipolar molecules begin to probe their broken symmetry phases dominated by the long-range, anisotropic dipole-dipole interaction. Several candidate phases including the p-wave superf
In this letter we consider dipolar quantum gases in a quasi-one-dimensional tube with dipole moment perpendicular to the tube direction. We deduce the effective one-dimensional interaction potential and show that this potential is not purely repulsiv
We investigate the effect of dipolar interactions in one-dimensional systems in connection with the possibility of observing exotic many-body effects with trapped atomic and molecular dipolar gases. By combining analytical and numerical methods, we s
By combining theory and experiments, we demonstrate that dipolar quantum gases of both $^{166}$Er and $^{164}$Dy support a state with supersolid properties, where a spontaneous density modulation and a global phase coherence coexist. This paradoxical