ﻻ يوجد ملخص باللغة العربية
Combining the tight-binding approximation and linear elasticity theory for a planar membrane, we investigate stretching of a graphene flake assuming that two opposite edges of the sample are clamped by the contacts. We show that, depending on the aspect ratio of the flake and its orientation, gapped states may form in the membrane in the vicinity of the contacts. This gap in the pre-contact region should be biggest for the armchair orientation of the flake and width to length ratio of around 1.
Using an array of coupled microwave resonators arranged in a deformed honeycomb lattice, we experimentally observe the formation of pseudo-Landau levels in the whole crossover from vanishing to large pseudomagnetic field strength. This is achieved by
As a canonical response to the applied magnetic field, the electronic states of a metal are fundamentally reorganized into Landau levels. In Dirac metals, Landau levels can be expected without magnetic fields, provided that an inhomogeneous strain is
We describe the formation of superconducting states in graphene in the presence of pseudo-Landau levels induced by strain, when time reversal symmetry is preserved. We show that superconductivity in strained graphene is quantum critical when the pseu
The degeneracy and spatial support of pseudo-Landau levels (pLLs) in strained honeycomb lattices systematically depends on the geometry -- for instance, in hexagonal and rectangular flakes the 0th pLL displays a twofold increased degeneracy, while th
We explore Andreev states at the interface of graphene and a superconductor for a uniform pseudo-magnetic field. Near the zeroth-pseudo Landau level, we find a topological transition as a function of applied Zeeman field, at which a gapless helical m