ﻻ يوجد ملخص باللغة العربية
Gamma-ray catalogs contain a considerable amount of unidentified sources. Many of these are located out of the Galactic plane and therefore may have extragalactic origin. Here we assume that the formation of massive black holes in galactic nuclei proceeds through a quasi-star stage and consider the possibility of jet production by such objects. Those jets would be the sources of collimated synchrotron and Compton emission, extending from radio to gamma rays. The expected lifetimes of quasi-stars are of the order of million of years while the jet luminosities, somewhat smaller than that of quasar jets, are sufficient to account for the unidentified gamma-ray sources. The jet emission dominates over the thermal emission of a quasi-star in all energy bands, except when the jet is not directed towards an observer. The predicted synchrotron emission peaks in the IR band, with the flux close to the limits of the available IR all sky surveys. The ratio of the $gamma$-ray flux to the IR flux is found to be very large ($sim 60$), much larger than in BL Lac objects but reached by some radio-loud quasars. On the other hand, radio-loud quasars show broad emission lines while no such lines are expected from quasi-stars. Therefore the differentiation between various scenarios accounting for the unidentified gamma-ray sources will be possible at the basis of the photometry and spectroscopy of the IR/optical counterparts.
In this paper we explore the evolution of a PWN while the pulsar is spinning down. An MHD approach is used to simulate the evolution of a composite remnant. Particular attention is given to the adiabatic loss rate and evolution of the nebular field s
A large part of the Galactic sources emitting very high energy (VHE; > 10^{11} eV) gamma-rays are currently still unidentified. The evolution of Pulsar Wind Nebulae (PWNe) plays a crucial role in interpreting these sources. The time-dependent modelin
Protostellar jets are present in the later stages of the stellar formation. Non-thermal radio emission has been detected from the jets and hot spots of some massive protostars, indicating the presence of relativistic electrons there. We are intereste
Imaging Atmospheric Cherenkov Telescopes have revealed more than 100 TeV sources along the Galactic Plane, around 45% of them remain unidentified. However, radio observations revealed that dense molecular clumps are associated with 67% of 18 unidenti
Recently the H.E.S.S. collaboration announced the detection of an unidentified gamma-ray source with an off-set from the galactic plane of 3.5 degrees: HESS J1507-622. If the distance of the object is larger than about one kpc it would be physically