ترغب بنشر مسار تعليمي؟ اضغط هنا

The slowly evolving role of environment in a spectroscopic survey of star formation in Mstar > 5E8 Msun galaxies since z=1

98   0   0.0 ( 0 )
 نشر من قبل Michael L. Balogh
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Chad R. Greene




اسأل ChatGPT حول البحث

We present a deep [OII] emission line survey of faint galaxies (22.5<KAB<24) in the Chandra Deep Field South and the FIRES field. With these data we measure the star formation rate (SFR) in galaxies in the stellar mass range 8.85 < log(M*/Msun) < 9.5 at 0.62<z<0.885, to a limit of SFR = 0.1Msun/yr. The presence of a massive cluster (MS1054-03) in the FIRES field, and of significant large scale structure in the CDFS field, allows us to study the environmental dependence of SFRs amongst this population of low-mass galaxies. Comparing our results with more massive galaxies at this epoch, with our previous survey (ROLES) at the higher redshift z=1, and with SDSS Stripe 82 data, we find no significant evolution of the stellar mass function of star-forming galaxies between z=0 and z=1, and no evidence that its shape depends on environment. The correlation between specific star formation rate (sSFR) and stellar mass at z=0.75 has a power-law slope of beta=-0.2, with evidence for a steeper relation at the lowest masses. The normalization of this correlation lies as expected between that corresponding to z=1 and the present day. The global SFR density is consistent with an evolution of the form (1+z)^2 over 0<z<1, with no evidence for a dependence on stellar mass. The sSFR of these star-forming galaxies at z=0.75 does not depend upon the density of their local environment. Considering just high-density environments, the low-mass end of the sSFR-M* relation in our data is steeper than that in Stripe 82 at z=0, and shallower than that measured by ROLES at z=1. Evolution of low-mass galaxies in dense environments appears to be more rapid than in the general field.



قيم البحث

اقرأ أيضاً

125 - K. Kovac , S. J. Lilly , C. Knobel 2009
We study the evolution of galaxies inside and outside of the group environment since z=1 using a large well defined set of groups and galaxies from the zCOSMOS-bright redshift survey in the COSMOS field. The fraction of galaxies with early-type morph ologies increases monotonically with M_B luminosity and stellar mass and with cosmic epoch. It is higher in the groups than elsewhere, especially at later epochs. The emerging environmental effect is superposed on a strong global mass-driven evolution, and at z~0.5 and log(M*/Msol)~10.2, the effect of group environment is equivalent to (only) about 0.2 dex in stellar mass or 2 Gyr in time. The stellar mass function of galaxies in groups is enriched in massive galaxies. We directly determine the transformation rates from late to early morphologies, and for transformations involving colour and star formation indicators. The transformation rates are systematically about twice as high in the groups as outside, or up to 3-4 times higher correcting for infall and the appearance of new groups. The rates reach values, for masses around the crossing mass 10^10.5 Msol, as high as (0.3-0.7)/Gyr in the groups, implying transformation timescales of 1.4-3 Gyr, compared with less than 0.2/Gyr, i.e. timescales >5 Gyr, outside of groups. All three transformation rates decrease at higher stellar masses, and must decrease also at the lower masses below 10^10 Msol which we cannot well probe. The rates involving colour and star formation are consistently higher than those for morphology, by a factor of about 50%. Our conclusion is that the transformations which drive the evolution of the overall galaxy population since z~1 must occur at a rate 2-4 times higher in groups than outside of them.
152 - Alan Dressler 2009
We present the star formation rate (SFR) and starburst fraction (SBF) for a sample of field galaxies from the ICBS intermediate-redshift cluster survey. We use [O II] and Spitzer 24 micron fluxes to measure SFRs, and 24 micron fluxes and H-delta abso rption to measure of SBFs, for both our sample and a present-epoch field sample from the Sloan Digital Sky Survey (SDSS) and Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We find a precipitous decline in the SFR since z=1, in agreement with other studies, as well as a corresponding rapid decline in the fraction of galaxies undergoing long-duration moderate-amplitude starbursts. We suggest that the change in both the rate and mode of star formation could result from the strong decrease since z=1 of gas available for star formation.
We study the star-forming (SF) population of galaxies within a sample of 209 IR-selected galaxy clusters at 0.3$,leq,z,leq,$1.1 in the ELAIS-N1 and XMM-LSS fields, exploiting the first HSC-SSP data release. The large area and depth of these data allo ws us to analyze the dependence of the SF fraction, $f_{SF}$, on stellar mass and environment separately. Using $R/R_{200}$ to trace environment, we observe a decrease in $f_{SF}$ from the field towards the cluster core, which strongly depends on stellar mass and redshift. The data show an accelerated growth of the quiescent population within the cluster environment: the $f_{SF}$ vs. stellar mass relation of the cluster core ($R/R_{200},leq,$0.4) is always below that of the field (4$,leq,R/R_{200},<,$6). Finally, we find that environmental and mass quenching efficiencies depend on galaxy stellar mass and distance to the center of the cluster, demonstrating that the two effects are not separable in the cluster environment. We suggest that the increase of the mass quenching efficiency in the cluster core may emerge from an initial population of galaxies formed ``in situ. The dependence of the environmental quenching efficiency on stellar mass favors models in which galaxies exhaust their reservoir of gas through star formation and outflows, after new gas supply is truncated when galaxies enter the cluster.
In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M_star >= 10^11 M_Sun) in the COSMOS field, and study their role in mass and size evolution. We use the 30-band photometric catalogue in COSM OS, complemented with the spectroscopy of the zCOSMOS survey, to define close pairs with a separation 10h^-1 kpc <= r_p <= 30h-1 kpc and a relative velocity Delta v <= 500 km s^-1. We measure both major (stellar mass ratio mu = M_star,2/M_star,1 >= 1/4) and minor (1/10 <= mu < 1/4) merger fractions of massive galaxies, and study their dependence on redshift and on morphology. The merger fraction and rate of massive galaxies evolves as a power-law (1+z)^n, with major mergers increasing with redshift, n_MM = 1.4, and minor mergers showing little evolution, n_mm ~ 0. When split by their morphology, the minor merger fraction for early types is higher by a factor of three than that for spirals, and both are nearly constant with redshift. Our results show that massive early-type galaxies have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ~ 1, leading to a mass growth of ~30%. We find that mu >= 1/10 mergers can explain ~55% of the observed size evolution of these galaxies since z ~ 1. Another ~20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (mu < 1/10) could contribute with an extra ~20%. The remaining ~5% should come from other processes (e.g., adiabatic expansion or observational effects). This picture also reproduces the mass growth and velocity dispersion evolution of these galaxies. We conclude from these results that merging is the main contributor to the size evolution of massive ETGs at z <= 1, accounting for ~50-75% of that evolution in the last 8 Gyr. Nearly half of the evolution due to mergers is related to minor (mu < 1/4) events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا