ترغب بنشر مسار تعليمي؟ اضغط هنا

Test of Jarzynski and Crooks fluctuation relations in an electronic system

101   0   0.0 ( 0 )
 نشر من قبل Olli-Pentti Saira
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent progress on micro- and nanometer scale manipulation has opened the possibility to probe systems small enough that thermal fluctuations of energy and coordinate variables can be significant compared with their mean behavior. We present an experimental study of nonequilibrium thermodynamics in a classical two-state system, namely a metallic single-electron box. We have measured with high statistical accuracy the distribution of dissipated energy as single electrons are transferred between the box electrodes. The obtained distributions obey Jarzynski and Crooks fluctuation relations. A comprehensive microscopic theory exists for the system, enabling the experimental distributions to be reproduced without fitting parameters.



قيم البحث

اقرأ أيضاً

Elucidating the energy transfer between a quantum system and a reservoir is a central issue in quantum non-equilibrium thermodynamics, which could provide novel tools to engineer quantum-enhanced heat engines. The lack of information on the reservoir inherently limits the practical insight that can be gained on the exchange process of open quantum systems. Here, we investigate the energy transfer for an open quantum system in the framework of quantum fluctuation relations. As a novel toolbox, we employ a nitrogen-vacancy center spin qubit in diamond, subject to repeated quantum projective measurements and a tunable dissipation channel. In the presence of energy fluctuations originated by dissipation and quantum projective measurements, the experimental results, supplemented by numerical simulations, show the validity of the energy exchange fluctuation relation, where the energy scale factor encodes missing reservoir information in the system out-of-equilibrium steady state properties. This result is complemented by a theoretical argument showing that, also for an open three-level quantum system, the existence of an out-of-equilibrium steady state dictates a unique time-independent value of the energy scale factor for which the fluctuation relation is verified. Our findings pave the way to the investigation of energy exchange mechanisms in arbitrary open quantum systems.
109 - F. Douarche 2005
We have experimentally checked the Jarzynski equality and the Crooks relation on the thermal fluctuations of a macroscopic mechanical oscillator in contact with a heat reservoir. We found that, independently of the time scale and amplitude of the dri ving force, both relations are satisfied. These results give credit, at least in the case of Gaussian fluctuations, to the use of these relations in biological and chemical systems to estimate the free energy difference between two equilibrium states. An alternative method to estimate of the free nergy difference in isothermal process is proposed too.
The understanding of out-of-equilibrium fluctuation relations in small open quantum systems has been a focal point of research in recent years. In particular, for systems with adiabatic time-dependent driving, it was shown that the fluctuation relati ons known from stationary systems do no longer apply due the geometric nature of the pumping current response. However, the precise physical interpretation of the corrected pumping fluctuation relations as well as the role of many-body interactions remained unexplored. Here, we study quantum systems with many-body interactions subject to slow time-dependent driving, and show that fluctuation relations of the charge current can in general not be formulated without taking into account the total energy current put into the system through the pumping process. Moreover, we show that this correction due to the input energy is nonzero only when Coulomb-interactions are present. Thus, fluctuation response relations offer an until now unrevealed opportunity to probe many-body correlations in quantum systems. We demonstrate our general findings at the concrete example of a single-level quantum dot model, and propose a scheme to measure the interaction-induced discrepancies from the stationary case.
The experimental verification of quantum fluctuation relations for driven open quantum system is currently a challenge, due to the conceptual and operative difficulty of distinguishing work and heat. The Nitrogen-Vacancy center in diamond has been re cently proposed as a controlled test bed to study fluctuation relations in the presence of an engineered dissipative channel, in absence of work [Hernandez-Gomez et al., Phys. Rev. Research 2, 023327 (2020)]. Here, we extend those studies to exploring the validity of quantum fluctuation relations in a driven-dissipative scenario, where the spin exchanges energy both with its surroundings because of a thermal gradient, and with an external work source. We experimentally prove the validity of the quantum fluctuation relations in the presence of cyclic driving in two cases, when the spin exchanges energy with an effective infinite-temperature reservoir, and when the total work vanishes at stroboscopic times -- although the power delivered to the NV center is non-null. Our results represent the first experimental study of quantum fluctuation relation in driven open quantum systems.
129 - S. Bertaina , N. Groll , L. Chen 2011
We report on multi-photon Rabi oscillations and controlled tuning of a multi-level system at room temperature (S=5/2 for Mn2+:MgO) in and out of a quasi-harmonic level configuration. The anisotropy is much smaller than the Zeeman splittings, such as the six level scheme shows only a small deviation from an equidistant diagram. This allows us to tune the spin dynamics by either compensating the cubic anisotropy with a precise static field orientation, or by microwave field intensity. Using the rotating frame approximation, the experiments are very well explained by both an analytical model and a generalized numerical model. The calculated multi-photon Rabi frequencies are in excellent agreement with the experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا